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“an office chair with
wheels and thick padding”

“a rustic wooden chair
with rough texture look” “a cute bulldog”

“an industrial table with
a metal frame and wood top”

“a Queen Anne table with
smooth and muted finish”

“an Italian basilica
with domed roof”

“a castle with cone-shaped
tower roofs and brick walls”

“a cute
Shiba Inu”

“a cute
golden retriever”

“a stylish furniture piece with leather
and a plush surface in a natural tone”

Fig. 1. Our 3D detailizer is trained using a text prompt, which defines the shape class and guides the stylization and detailization of any number of coarse 3D
shapes with varied structures. Once trained, our detailizer can instantaneously (in <1𝑠) transform a coarse proxy into a detailed 3D shape, whose overall
structure respects the input proxy and the appearance and style of the generated details follows the prompt. We show results for both human-made (left) and
organic (middle) shapes, with clearly out-of-distribution structures (e.g., the multi-seat “chair”, letter-shaped shelvings, and two-headed dogs with six legs). On
the right, when the training prompt references a generic term such as “furniture,” which encompasses multiple object categories with diverse structures,
such as chairs, beds, stools, etc., the 3D detailizer can be reused, as a feed-forward model without retraining, to produce a collection of detailized 3D models
spanning all of these categories with structural variations. These models can then be arranged to form a style-consistent 3D scene.

We introduce a 3D detailizer , a neural model which can instantaneously
(in <1s) transform a coarse 3D shape proxy into a high-quality asset with
detailed geometry and texture as guided by an input text prompt. Our model
is trained using the text prompt, which defines the shape class and charac-
terizes the appearance and fine-grained style of the generated details. The
coarse 3D proxy, which can be easily varied and adjusted (e.g., via user
editing), provides structure control over the final shape. Importantly, our
detailizer is not optimized for a single shape; it is the result of distilling a
generative model, so that it can be reused, without retraining, to generate
any number of shapes, with varied structures, whose local details all share
a consistent style and appearance. Our detailizer training utilizes a pre-
trained multi-view image diffusion model, with text conditioning, to distill
the foundational knowledge therein into our detailizer via Score Distillation
Sampling (SDS). To improve SDS and enable our detailizer architecture to
learn generalizable features over complex structures, we train our model in
two training stages to generate shapes with increasing structural complexity.
Through extensive experiments, we show that our method generates shapes

of superior quality and details compared to existing text-to-3D models under
varied structure control. Our detailizer can refine a coarse shape in less than
a second, making it possible to interactively author and adjust 3D shapes.
Furthermore, the user-imposed structure control can lead to creative, and
hence out-of-distribution, 3D asset generations that are beyond the cur-
rent capabilities of leading text-to-3D generative models. We demonstrate
an interactive 3D modeling workflow our method enables, and its strong
generalizability over styles, structures, and object categories.

CCS Concepts: • Computing methodologies→ Shape modeling.

Additional KeyWords and Phrases: 3D generative model, shape detailization,
shape refinement, text-to-3D, knowledge distillation

1 INTRODUCTION
3D generative models are becoming increasingly powerful, enabling
the creation of 3D content with ease from texts [Li et al. 2024b; Poole
et al. 2023; Shi et al. 2024] or images [Hong et al. 2024; Liu et al.
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(a) Coarse shape (b) Coin3D (c) CLAY (d) Ours

“a chair with a backrest shaped like a large maple leaf”

“a cute bulldog”

Fig. 2. Comparing to state-of-the-art generators on out-of-distribution
coarse structures (a). Coin3D [Dong et al. 2024] (b) is unable to produce
proper textures based on the prompts, while CLAY [Zhang et al. 2024] (c)
falls short in respecting the input structures. Our method performs better
on both fronts, e.g., maple leaf-shaped backs with curved armrests and legs
as matching styles, and the multiple legs and heads of the bulldog.

2023; Xiang et al. 2024]. However, artistic creation involves realizing
the design vision of the artist, which often requires precise control
over both the coarse structure and the local details of the generated
object. Such precision cannot be fully achieved through text or
image inputs alone. In addition, the artist’s creative exploration
of the design space is greatly facilitated by the ability to quickly
generate detailed 3D assets via structural variations.

Priorworks propose generativemodels which rely on user-defined
coarse shapes to control the structure of the generated shapes, e.g.,
by formulating the problem as that of 3D voxel up-resolution [Chen
et al. 2024a, 2023b, 2021; Ren et al. 2024; Shen et al. 2021a], while
some others [Hui et al. 2024; Zhang et al. 2024] develop 3D genera-
tive models with coarse shapes as conditioning. However, as their
models were trained on limited 3D shapes, they face generalizability
issues and cannot produce local details of arbitrary desired styles.
Some approaches [Chen et al. 2023a; Metzer et al. 2023] optimize
the initial coarse shape via Score Distillation Sampling (SDS) us-
ing text-to-image diffusion models, which possess much stronger
generalizability as they were trained on large image collections. Yet
the structures of their generated shapes often deviate from those of
the input shapes. In addition, each shape takes a significant amount
of time to optimize, ranging from minutes to hours. More recently,
some approaches [Chen et al. 2024b; Dong et al. 2024] have im-
proved the structure adherence by adopting finetuned multi-view
diffusion models conditioned on coarse shape inputs.

Despite such advances, a common issue with all methods relying
on image diffusion models is that they can only generate shapes
that are “ordinary” with respect to the pretrained diffusion models
— they typically fail when the structure of the conditioning coarse
shape is out of distribution, e.g., see examples from Figures 1 and
a comparison to current generation models in Figure 2. Figure 3
further shows that state-of-the-art text-to-3D and text-to-image
models are unable to deal with such out-of-distribution examples.
Also, as these models perform per-shape optimization with no style
consistency across different shapes, they cannot generate a coherent

(a) TRELLIS (b) Hunyuan3D (c) Stable Diffusion (d) MVDream

Fig. 3. State-of-the-art text-to-3D and text-to-image models are unable to
generate “a cute bulldog with two heads and six legs" from text.

collection of 3D shapes with varied structures under the same style
prompt, as shown by the “furniture” example in Figure 1-right.
In this work, we aim to tackle the above issues by introducing

a 3D detailization model, or a detailizer , which is trained using a
text prompt and can transform a coarse 3D shape proxy into a high-
quality asset with detailed geometry and texture. The text prompt
defines the shape class and guides the stylization and detailization
of any number of coarse 3D shapes with varied structures. On the
other hand, the shape proxy, which can be easily adjusted (e.g., via
user editing), provides structure control over the final shape.
Our method relies on a pretrained multi-view image diffusion

model with text conditioning, to achieve the generation of different
possible styles. Given a text description of the desired style, instead
of optimizing a single shape with SDS as in prior works [Chen et al.
2023a, 2024b; Dong et al. 2024; Metzer et al. 2023], we distill a 3D
generative model as our detailizer, so that it can be reused, without
retraining, to generate any number of shapes, with varied structures,
whose local details all share a consistent style. We leverage a 3D con-
volutional neural network (CNN) as the backbone for our detailizer,
so that the locality of the convolution operators helps our model
learn localized features and enables it to handle coarse shapes of ar-
bitrary structures. During training, we utilize a structure-matching
loss defined on the rendered images of the generated shape and
the input coarse shape, so the generated shape matches the struc-
ture of the input. To facilitate the learning of generating complex
structures, we train the detailizer in two training stages to generate
shapes with increasing structural complexity. When the training
is done for the given text prompt, our detailizer is deployable as a
feed-forward model that can detailize a coarse 3D shape in less than
a second. This allows interactive exploration of structurally varying
3D shape designs in a common style space.
Our method is coined ART-DECO: Arbitrary Text guidance for

3D Detailizer Construction. We demonstrate both quantitatively
and qualitatively that ART-DECO generates 3D shapes of superior
quality and details compared to state-of-the-art 3D generative mod-
els with structure control, such as ShaDDR [Chen et al. 2023b],
CLAY [Zhang et al. 2024], and Coin3D [Dong et al. 2024], especially
when the input structure may be out-of-distribution and exhibit cre-
ativity; see Figure 2. We also show that ART-DECO can be trained
using a single prompt to reference a generic term such as “furni-
ture.” Then, the same detailizer can be reused to quickly generate
structurally varying shapes spanning multiple furniture categories
such as chairs, tables, beds, etc., which share a common style, e.g.,
“leather, plush surface”, as also prescribed in the training prompt;
see Figure 1. We further demonstrate an interactive 3D modeling
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workflow ART-DECO enables, and its generalizability to different
out-of-distribution structures in an interactive application.

2 RELATED WORK
3D generative models. 3D generation methods went through dras-

tic development in the recent decade. Early works mainly focus on
building generative models under various 3D representations, such
as voxels [Choy et al. 2016; Wu et al. 2016], point clouds [Achlioptas
et al. 2018; Fan et al. 2017; Nichol et al. 2022], implicit fields [Chen
and Zhang 2019; Mescheder et al. 2019; Park et al. 2019], and poly-
gon meshes [Nash et al. 2020; Shen et al. 2024; Siddiqui et al. 2024].
These methods are trained with various generative frameworks
such as variational autoencoders [Kingma and Welling 2014], gener-
ative adversarial networks [Goodfellow et al. 2020], and denoising
diffusion probabilistic models [Ho et al. 2020; Song et al. 2021]. Due
to data scarcity, these methods have limited generalization ability
beyond the training distribution.

With the success of image diffusion models [Rombach et al. 2022;
Saharia et al. 2022], DreamFusion [Poole et al. 2023] and subsequent
works [Chen et al. 2023a; Lin et al. 2023; Melas-Kyriazi et al. 2023;
Wang et al. 2023] distill the 2D image prior in the diffusion models
into 3D shapes by optimizing individual shapes with Score Dis-
tillation Sampling (SDS), therefore achieving zero-shot text-to-3D
generation. Several works [Lorraine et al. 2023; Qian et al. 2024; Xie
et al. 2024] also attempt to distill feed-forward text-to-3D generative
models with SDS. While their generalization ability has been greatly
improved, they still lack 3D understanding, which often leads to
suboptimal results such as the multi-face Janus problem [Chen et al.
2023a]. Zero123 [Liu et al. 2023] finetunes image diffusion models
on large 3D object datasets such as Objaverse [Deitke et al. 2023], to
make the diffusion model capable of generating novel-view images
conditioned on a single input image and the target viewpoints. Later
works including MVDream [Shi et al. 2024] and others [Liu et al.
2024; Long et al. 2024; Shi et al. 2023; Xiang et al. 2023] focus on im-
proving multi-view consistency by generating all the views together
and introducing extra information to condition the diffusion process.
These multi-view images can then be used to reconstruct a 3D shape
via differentiable rendering [Kerbl et al. 2023; Mildenhall et al. 2021;
Wang et al. 2021] or via a feed-forward 3D shape reconstruction
network [Hong et al. 2024; Li et al. 2024b].

Recently, a few methods [Chen et al. 2024c; Hui et al. 2024; Li et al.
2024a; Ren et al. 2024; Wu et al. 2024; Xiang et al. 2024; Zhang et al.
2024] have been proposed to train 3D diffusion models directly from
large 3D datasets, bypassing the intermediate image diffusion model.
Nevertheless, the existing 3D generative models primarily focus on
text or image-conditioned generation. They often lack precise con-
trol over the overall structure of the generated 3D shapes, therefore
making it difficult to be incorporated into an artist’s workflow. In
contrast, our method trains a feed-forward model that detailizes
a coarse shape with a style specified by a text prompt, making it
possible to create 3D shapes in an interactive manner where an
artist can make adjustments to the coarse shape for refinement.

Geometric detailization. Many traditional [Kajiya and Kay 1989;
Neyret 1998; Zhou et al. 2006] and learning-based [Berkiten et al.
2017; Hertz et al. 2020; Yifan et al. 2022] approaches have been

proposed to synthesize geometric details on coarse shapes by trans-
ferring geometric textures, which are often represented as displace-
ment maps or geometric texture patches, from detailed shapes.
In addition, neural subdivision [Liu et al. 2020] and subsequent
works [Chen et al. 2023c; Chen and Zhang 2021; Shen et al. 2021b]
can also learn local geometric details in training shapes and ap-
ply them to new shapes. In another line of work, methods that are
based on voxel representation can generate geometric details by
replicating local voxel patches in detailed reference shapes [Chen
et al. 2024a, 2023b, 2021; Sun et al. 2022]. However, these methods
all require detailed 3D exemplar shapes provided as style references,
which limits their capability when the exemplar shapes with de-
sired style are scarce or unavailable. To mitigate the issue of data
scarcity, some recent methods [Chen et al. 2023a; Gao et al. 2023;
Metzer et al. 2023; Michel et al. 2022] propose to utilize image-space
supervision provided by CLIP [Radford et al. 2021] or SDS, where
the style is provided by an input text. However, these methods take
a long time to converge, hindering the possibility of an interactive
modeling experience. Most recent works [Chen et al. 2024b; Dong
et al. 2024] finetune multi-view image diffusion models conditioned
on input coarse shapes, which provide faster convergence and better
structure adherence. Despite these advancements, a common issue
with these methods is that they can only generate shapes within the
training distribution and fail when the structure of the condition-
ing coarse shape is uncommon. Our work addresses this issue by
distilling a generative model which is designed to be generalizable
and trained with increasing structure complexity.

3 METHOD
In this section, we detail the design and the training of our detailizer.
An overview is provided in Figure 4. Our detailizer upsamples an
input coarse shape represented as binary occupancy voxels into a
detailed 3D shape represented by a volume radiance field. Specifi-
cally, given an input coarse voxel grid of resolution 𝑘3, our detailizer
networks will generate two voxel grids of resolution 𝐾3 to store a
density field and a albedo field. The generated shape can then be
rendered via volumetric rendering from the two fields; alternatively,
a mesh with textures can be exported to be visualized. In this pa-
per, we always export meshes for visualization. We use 𝑘 = 32 and
𝐾 = 128 in our experiments.

3.1 Network architecture
We utilize 3D convolutional networks as backbone for our detailizer,
as inspired by prior voxel detailization works [Chen et al. 2024a,
2023b, 2021] which showed great generalizability on arbitrary in-
put coarse shapes. The detailed network architecture can be found
in the supplementary. The input to our detailizer is a coarse oc-
cupancy voxel grid 𝑣 ∈ {0, 1}𝑘×𝑘×𝑘 . The detailizer has two sep-
arate upsampling networks: G𝑑 for generating the density field
𝑣 ′
𝑑

= G𝑑 (𝑣) ∈ [0, +∞)𝐾×𝐾×𝐾 , and G𝑎 for the albedo field 𝑣𝑎 =

G𝑎 (𝑣) ∈ [0, 1]𝐾×𝐾×𝐾×3, where each voxel stores an RGB color. To
enforce that the generated shape follows the structure of the input
voxels, we dilate the input voxel grid 𝑣 by one voxel and then up-
sample it to 𝐾3 resolution via nearest neighbor to obtain a binary
mask 𝑣𝑚 . We then apply the mask to the output density field 𝑣 ′

𝑑
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Input coarse voxel grid

Text prompt: “a farmhouse chair with a
cross-back and a natural wood finish”

Upsampling
networks

Volumetric
rendering

Density field

Albedo field

L𝑆𝐷𝑆

L𝑟𝑒𝑔

Rendered mask Coarse mask

Rendered RGB

Text condition

Pretrained
multi-view

diffusion model

Fig. 4. Overview of the training of our detailizer. Given a coarse voxel grid and a text prompt that describes a style, two 3D convolutional networks upsample
the coarse voxels into high-resolution density and albedo fields, respectively. Multi-view images are then rendered from the density and albedo fields, and a
pretrained multi-view diffusion model conditioned on the text prompt is used as a prior for Score Distillation Sampling (L𝑆𝐷𝑆 ). The regularization loss (L𝑟𝑒𝑔)
measures the similarity between the masks rendered from the generated shape and those from the input coarse voxel grid, thus enforcing the structure of the
generated shape to be consistent with the input coarse voxels.

via element-wise multiplication to obtain the final density field:
𝑣𝑑 = 𝑣 ′

𝑑
· 𝑣𝑚 . This masking step prevents the network from generat-

ing artifacts or unnecessary details far away from the structure of
the input coarse shape, and allows the network to focus its capacity
on generating plausible details only within the valid region 𝑣𝑚 .

3.2 Training
To train the detailizer, we run the networks on a training set of
coarse voxel grids. For each voxel grid, we generate the density field
𝑣𝑑 and the albedo field 𝑣𝑎 , render multi-view images from them
via volumetric rendering [Mildenhall et al. 2021], and leverage a
pretrained multi-view diffusion model to provide training super-
vision via SDS [Poole et al. 2023; Shi et al. 2024]. Formally, given
the density field 𝑣𝑑 , the albedo field 𝑣𝑎 , the camera parameters c𝑖
(for the i-th view), the volumetric rendering function R(·), a text
prompt 𝑦, and the pretrained multi-view diffusion model 𝜖𝜃 , we first
render multi-view images x𝑖 = R(𝑣𝑑 , 𝑣𝑎 ; c𝑖 ). Note that 𝜖𝜃 operates
on multi-view images, so in each iteration, we render a set of images
{x𝑖 }𝑖=1,...,𝑁 from the same shape, and then we can use 𝜖𝜃 to obtain
the denoised images of x𝑖 : {x̂𝑖 } = 𝜖𝜃 ({x𝑖 }𝑡 ;𝑦, {c𝑖 }, 𝑡), where 𝑡 is the
time step and {x𝑖 }𝑡 are input images after adding noise 𝜖 for time
step 𝑡 . Now we can define our multi-view SDS loss as

L𝑆𝐷𝑆 = E𝑡,𝜖,c𝑖 ∥x𝑖 − x̂𝑖 ∥22 . (1)

We use MVDream [Shi et al. 2024] as our pretrained multi-view
diffusion model, which is a model fine-tuned from Stable Diffu-
sion [Rombach et al. 2022] on the Objaverse dataset [Deitke et al.
2023] to generate 𝑁 = 4 views at the same time.

SDS alone does not guarantee that the structure of the generated
shape is consistent with the input coarse voxels. Even with the
masking step described in Section 3.1 so that the network can only
generate details in the coarse voxels’ vicinity, the network often

produces 3D shapes that miss certain structures, such as armrests
in a chair. Therefore, to ensure the generated shape fully respects
the structure of the input coarse voxels, we enforce the rendered
mask (the alpha/transparency channel in the rendered image) of
the generated shape to be similar to the rendered mask of the in-
put coarse voxel grid when the masks are rendered from the same
camera pose. We formulate this constraint as a regularization loss

L𝑟𝑒𝑔 = Ec𝑖 ∥m𝑖 − m̂𝑖 ∥22 (2)

where m𝑖 is the rendered mask of the generated shape from camera
pose c𝑖 , and m̂𝑖 is the rendered mask from the input coarse voxels.

The final loss function to train our model is defined as

L = L𝑆𝐷𝑆 + 𝜆𝑟𝑒𝑔 · L𝑟𝑒𝑔 (3)

where 𝜆𝑟𝑒𝑔 is a hyper-parameter balancing between distilling plau-
sible shapes from SDS and preserving the structure of the inputs.
During training, we set 𝜆𝑟𝑒𝑔 = 104, and gradually reduce the value
to 10, allowing the network to focus on generating structures in the
early stages of training and refining local details later.

3.3 Data
Our input text prompt specifies the desired style and indicates the
generic shape category of the generated shapes, such as chairs;
however, it does not provide detailed structural descriptions. During
training, we need coarse voxel grids of that shape category to serve
as input to our detailizer. For a specific shape category, if a decently
large 3D dataset is available, we simply voxelize the existing shapes
into coarse voxel grids as our training set. Otherwise, we download
a few shapes (16-32) from the Internet, an adopt a similar strategy to
that of DECOLLAGE [Chen et al. 2024a] to generate a large number
of coarse voxel grids with diverse structures via data augmentation.
Specifically, we randomly scale the existing shapes in 𝑥 , 𝑦, and 𝑧



ART-DECO: Arbitrary Text Guidance for 3D Detailizer Construction • 5

Input
coarse voxels

Output
shapes

(a) (b) (c)

“a chair with a backrest shaped like a large maple leaf”

Fig. 5. Strong generalizability of 3D convolutional networks. During the
first training stage, our detailizer is trained on a single coarse voxel grid to
generate a single detailed shape (a). After training, when tested on different
structures, our detailizer demonstrates strong generalizability and produces
reasonable results (b, c). These results are not perfect, but they can be good
initial points for the image diffusion model to refine in our second training
stage, where we use multiple coarse shapes.

directions, and apply random rotations and merge multiple shapes
into a single shape to enrich the geometric variation. See Section 4
for more details about the shapes used in our experiments.

3.4 Two-stage Learning
When our detailizer was trained with all the coarse shapes in the
training set (which contains both simple and complex structures;
see Figure 11 for examples), it failed to generate certain structures,
as shown in Figure 9. This is because the multi-view image diffu-
sion model tends to prioritize generating shapes that align with
its learned biases, i.e., shapes with simple and common structures.
Therefore, when the model is trained with complex structures from
the very beginning, it learns to simplify the structure rather than
adhering to it. To address this, we have observed that 3D convolu-
tional networks have strong generalizability even when trained on
a single simple shape, thanks to the locality and inductive bias of
convolution operations. As shown in Figure 5, our detailizer trained
on a single coarse voxel grid generalizes reasonably well on other in-
puts during inference, even when the input has complex structures.
This model with single-shape training can be a good initialization
for multi-shape training by providing good initial shapes for the
image diffusion model to refine. Therefore, we employ a two-stage
training scheme. In the first stage, we train the model on a single
input coarse voxel grid with a simple structure. And in the second
stage, we keep training the model on all the coarse shapes in our
training set until convergence.

In our experiments, we train individual models for different text
prompts. The first stage of training takes about 1.5 hours and the
second stage takes about 3.5 hours on a single NVIDIA 4090 GPU.

4 EXPERIMENTS
In this section, we test our method on text prompts describing differ-
ent styles from various shape categories. We show that our detailizer
can generate high-quality shapes that adhere to both the text prompt
and the structure of the input coarse shape. We compare with state-
of-the-art 3D generative models with text and structural control
in Section 4.1 to demonstrate the effectiveness of our proposed ap-
proach. We then validate our design via ablation study in Section 4.2.

Table 1. Quantitative comparison of text-guided 3D generation with struc-
tural control. Metrics are averaged over the evaluated text prompts.

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
ShaDDR 201.780 20.129 0.620 0.715
Coin3D 200.935 20.250 0.566 0.678
CLAY 175.402 23.943 0.626 0.725
Ours 171.703 26.047 0.639 0.739

Finally, we showcase several applications enabled by our method
in Section 4.3, including style-consistent detailization for shapes in
multiple categories, and an interactive modeling application.

Datasets. We evaluate our model on seven shape categories: chair,
table, couch, bed, building, animal, and cake. For each category, we
collect 1,000 to 2,000 shapes from ShapeNet [Chang et al. 2015],
3D Warehouse [Trimble Inc. 2014], and Objaverse [Deitke et al.
2023] and voxelize them to obtain coarse voxels for training. See
supplementary material for details.

Evaluation metrics. For quantitative evaluation, we adopt the
Render-FID and CLIP Score proposed in LATTE3D [Xie et al. 2024]
to evaluate the fidelity of the generated shapes and their consistency
against the text prompt. Render-FID measures the Fréchet Inception
Distance (FID) between the rendered images of the generated shapes
and the images sampled from Stable Diffusion with the same text
prompts. It evaluates how closely the generated shapes align with
the 2D prior in the image diffusion model. CLIP Score measures the
average CLIP score [Radford et al. 2021] between the text prompt and
each rendered image of the generated shape. It evaluates how closely
the generated shapes align with the input text prompt. We also
adopt Strict-IoU and Loose-IoU proposed in DECOR-GAN [Chen
et al. 2021] to measure the consistency between the structures of the
generated shape and its input coarse voxel grid. Strict-IoU computes
the Intersection over Union (IoU) between the the input voxels
and the occupancy voxels obtained by voxelizing the generated
shape. Loose-IoU is a less restrictive version of Strict-IoU which
computes the proportion of occupied voxels in the input voxels
that are also occupied in the occupancy voxels of the generated
shape. Generating a single shape using CLAY’s commercial product,
Rodin, takes about 5-10 minutes, while Coin3D requires about 25
minutes to optimize one, which makes both approaches impractical
for large-scale automatic evaluation. Therefore, we randomly select
8 text prompts for testing. To prepare the voxel grids for testing, for
each text prompt, we randomly sample 10 coarse shapes in the same
way we obtained the training coarse shapes. We run all methods on
those shapes, compute the metrics, and take the average. We report
the average across all text prompts in the paper, and the average for
each text prompt in the supplementary material.

4.1 Text-guided detailization
We compare our method with several methods that can gener-
ate 3D shapes with structural control: CLAY [Zhang et al. 2024],
Coin3D [Dong et al. 2024], and ShaDDR [Chen et al. 2023b]. CLAY
is a feed-forward model trained directly on large 3D datasets. It is
able to take a coarse voxel grid as structural guidance in addition to
its text conditioning. However, its code is not publicly available. We
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(a) Input coarse voxels (b) Ours + SD (c) Ours + MVDream

“a Russian cathedral with domes and tall spires”

Fig. 6. Ablation study on the choice of image diffusion models. (a) We train
both models with the same coarse input in the first stage. (b) Our method
with a single-view diffusion model (Stable Diffusion) as SDS guidance strug-
gles to produce a complete shape. (c) Ourmethodwith amulti-view diffusion
model (MVDream) as guidance produces high-quality results.

instead use Rodin1, a commercial product built on and powered by
CLAY, as a substitute for testing. Coin3D is an optimization-based
framework for refining coarse shapes. We run the officially released
code for testing in our experiments. ShaDDR is a shape detailiza-
tion model whose network architecture and input/output closely
resemble those of our detailizer. However, ShaDDR requires ground
truth 3D shapes as style reference. Therefore, for each text prompt,
we use one detailed shape generated by our method for training
ShaDDR. We provide the training shapes in the supplementary and
verify that the shapes are in good quality.

We showcase qualitative results of our method in Figure 12, and
comparewith othermethods in Figure 14. In Figure 14, Coin3D strug-
gles to generate accurate geometry and texture when conditioned
on complex structures. This is primarily because the multi-view
diffusion model that Coin3D is based on does not generalize well to
uncommon structures. We provide additional results in the supple-
mentary material to show the intermediate outputs from Coin3D
and to demonstrate that Coin3D works on simple structures but fails
on complex structures. ShaDDR was designed to be trained with
clean, high-quality 3D shapes. Therefore, when trained with noisy
shapes obtained from SDS optimization, the quality of ShaDDR’s out-
put becomes unsatisfactory. CLAY has cleaner geometry and better
structure preservation as it was trained on real 3D data. Nonethe-
less, it often fails to generate detailed local geometries and textures.
CLAY can also deviate significantly from the structure of the input
coarse shape if the structure is uncommon, see the table and animal
examples in Figure 14. In comparison, our method can effectively
handle both out-of-distribution coarse structures and creative text
prompts. It can provide users with flexible control over the structure
and the style while generating high-quality shapes. We also report
quantitative comparisons in Table 1, which further demonstrates
the superior performance of our method.

4.2 Ablation Study
Image diffusion model: single-view vs. multi-view. Since we lever-

age pretrained image diffusion models and distill their knowledge
into our detailizer, different diffusion models can significantly af-
fect the generation quality of 3D shapes. Therefore, we conduct an
1https://hyper3d.ai/

(a) Baseline (b) Ours (c) Ours

“a short-haired
tabby cat”

1. Make the
body larger

2. Reposition the
tail downward

3. Increase the
leg spacing

Fig. 7. Ablation study on the masked MVDream baseline. The baseline (a)
fails to preserve the input structure (see (b) top). Our result (b) fully respects
the structure, and changes its structure according to new edits (c).

(a) Input voxels

“a metal chair
with a leather
back and a

cushioned seat”

(b) 𝜆 = 0 (c) 𝜆 = 102

(d) 𝜆 = 103 (e) 𝜆 = 104 (f) Images from MVDream

Fig. 8. Ablation study on different regularization weights 𝜆𝑟𝑒𝑔 . (b-e) show
that with increasing 𝜆𝑟𝑒𝑔 , the generated shape becomes more consistent
with the input coarse structure (a). We also show example images sampled
from MVDream in (f), which tends to produce simple structures.

ablation study using two different types of diffusion models: Stable
Diffusion, a single-view image diffusion model trained on natural
images, which possesses 2D image prior; and MVDream [Shi et al.
2024], a multi-view image diffusion model finetuned on multi-view
rendered images of 3D objects, thus incorporating additional 3D
prior. In both settings, we use the same network and loss functions,
with the only difference being the choice of image diffusion models.

Figure 6 shows the qualitative comparison of the 3D shapes gen-
erated by our method using different image diffusion models. Stable
Diffusion cannot synthesize a reasonable shape while MVDream
can generate a 3D shape with significantly improved geometric and
texture details, which demonstrates the importance of the 3D prior
in the image diffusion model and the benefit of having multi-view-
consistent distillation during SDS.

Masked MVDream baseline. To show the necessity of distilling a
generative neural network rather than distilling a single shape, we
adopt MVDream to directly optimize a neural field while enforcing
structural control by masking the neural field with the input coarse
voxels. As shown in Figure 7 (a), the baseline fails to preserve the
input coarse structure, as MVDream’s multi-view diffusion model
lacks prior knowledge of atypical structures, such as a cat with
six legs. In contrast, our model, although trained on coarse voxels
of four-legged animals using the same multi-view diffusion model,

https://hyper3d.ai/
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(a) Input
coarse voxels

(b) w/o two-stage
learning

(c) w two-stage
learning

“a cake with chocolate dripping down the sides”

Fig. 9. Ablation study on two-stage learning. When skipping the first-stage
training, the detailizer learns to simplify the structure of the generated
shape (b) so the shape resembles a round, real-life cake; it does not strictly
follow the structure of the input coarse shape (a). With both training stages,
the detailizer correctly learns to generate the shape (c) in an uncommon
structure. The regularization loss is used in both settings.

Table 2. Quantitative ablation study on the proposed regularization loss.
Metrics are averaged over the evaluated text prompts.

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
𝜆𝑟𝑒𝑔 = 0 171.388 25.718 0.585 0.693
𝜆𝑟𝑒𝑔 = 102 171.684 25.621 0.584 0.690
𝜆𝑟𝑒𝑔 = 103 171.552 25.423 0.623 0.728
𝜆𝑟𝑒𝑔 = 104 171.703 26.047 0.639 0.739

demonstrates strong generalization ability to unseen structures,
thanks to the inductive bias of convolutional networks. Moreover,
our model can refine new edits in a single forward pass in less than
a second without retraining, whereas optimization-based methods
require retraining for each new structural change; see Figure 7 (c).

Opacity regularization loss. As explained in Section 3.2, the pre-
trained image diffusion model tends to generate simple and common
shapes due to its learned biases. In Figure 8 (f), we show that when
armrests and stretchers are not explicitly mentioned in the text
prompt, images sampled from MVDream often lack these structures,
leading to missing parts in the generated 3D shapes, even though
the parts exist in the input coarse voxel grid; see Figure 8 (a) and
(b). Since our model is trained on shapes with diverse structures,
such parts should be handled automatically by the network without
explicit text descriptions. Therefore, we use the regularization loss
defined on the rendered masks to ensure structural consistency.
Figure 8 (b-e) show qualitative results using the regularization

loss with different 𝜆𝑟𝑒𝑔 values. By using a larger 𝜆𝑟𝑒𝑔 , the generated
shape can faithfully preserve the structure of the coarse voxels,
even when the structure is asymmetric, e.g., with different numbers
of stretchers and varying armrest lengths on each side. This is
also reflected by the higher IoU in Table 2. Note that the Render-
FID of the model without the regularization loss, i.e. 𝜆𝑟𝑒𝑔 = 0, is
slightly higher, since the generated shapes are more aligned with
the preferences of the image diffusion model.

Two-stage learning. As discussed in Section 3.4, the image diffu-
sion model’s learned prior exhibits strong biases toward common
structures. In Figure 9 (b), when the text prompt indicates that the
shape is to be a cake, despite that the input coarse shape is not
round, the model attempts to generate a round cake, although a

(a) Car (b) Plant

“a modern SUV with a sturdy frame
and a tinted windows”

“an asplenium nidus planted
in a clay pot”

Fig. 10. Limitations. Our current representation is not suitable for
generating shapes with glossy/reflective material or shapes with thin
threads/surfaces.

quarter of the cake is cut off by our masking (see Section 3.1). By us-
ing our two-stage training strategy, the model effectively preserves
the structure of the input coarse voxel grids while maintaining
high-quality geometry and texture.

4.3 Applications
Cross-category detailization. By using a highly generic text prompt

that can describe multiple shape categories, such as “furniture” for
chairs, tables, couches, and beds, our detailizer can generate a di-
verse collection of detailed 3D shapes across these categories, while
maintaining consistent styles throughout, as shown in Figure 1,
where we have trained a single model using the coarse voxel grids
from all four categories. Note that we did not provide any class la-
bels to the network during training. Yet once trained, our detailizer
can automatically identify the category of the input coarse voxel
grid and upsample it into the corresponding detailed 3D shape.

Interactive modeling. Leveraging the feed-forward model design,
our detailizer is capable of upsampling an input coarse voxel grid
into a detailed 3D shape in under one second, making it possible
to be incorporated into an interactive modeling application where
users can refine and iterate on designs efficiently; see Figure 13. We
have developed an interactive modeling interface that enables users
to edit a coarse voxel grid, select a text prompt, and visualize the
resulting detailed and textured 3D shape; see supplementary video.

5 CONCLUSIONS
We introduce ART-DECO, a shape detailizationmodel that can refine
a coarse shape of arbitrary structure into a detailed 3D shape. By
distilling the knowledge in a pretrained multi-view image diffusion
model, our detailizer learns to generate local details with the style
described in an input text prompt. Once trained, our detailizer can
be used to detailize given coarse shapes into detailed shapes with a
consistent style. We demonstrate the superior performance of our
method in the experiments and in an interactive modeling workflow.
The dense voxel representation that our method adopts enables

us to take advantage of convolutional networks. However, it also
limits the resolution of our generated shapes. Alternative represen-
tations and network design can be explored to address this issue.
Our representation stores a fixed color in each voxel instead of
view-dependent colors, therefore it cannot represent shapes with
glossy or reflective surfaces, see Figure 10. Our detailizer requires
re-training for each different text prompt, which can be inconve-
nient for fast prototyping. With sufficient compute, we believe it is
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possible to distill a more generic detailizer that can take both the
text prompt and the coarse shape as input during inference, and
generate detailed shapes at an interactive speed.
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Fig. 11. Training set examples of coarse shapes: simple structures are shown in white, and complex ones in light yellow.

“a cute smooth-coated
Labrador retriever” “a wild coyote”

“a short-haired
tabby cat” “a wild grizzly bear”

“a large
Bengal tiger” “a robot dog”

“a Gothic church with
spires, detailed carvings
and flying buttresses”

“an Italian basilica
with domed roof

“a medieval castle with
towers, battlements
and stone walls”

“a large stone castle
with round towers
and pointed arches”

“a castle with cone-
shaped tower roofs
and brick walls”

“a Byzantine cathedral
cathedral with tall
domes, mosaics”

“a folding table
with plastic surface
and metal frame”

“an industrial table
with a metal frame
and a wood top”

“a mid-century modern
table with clean lines
and angled legs”

“a luxury marble
table with a
stone surface”

“a stone table
with a heavy base
and rough texture”

“a table with metal
frame and a simple
wood surface”

Fig. 12. Results of text-guided detailization with input coarse voxels control. We show the input coarse voxels on the left and the text prompts on the top.
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Lengthen
the leg

Add one
more leg

Thicken the
seat padding

Expand the seat
and add more legs

Add a small
backrest

Expand the
backrest size

Add two
armrests

Lengthen
the armrests

Fig. 13. Example of procedural editing. After training the model with the text prompt “an office chair with wheels and thick padding”, the detailization of each
edit takes less than one second. Our method demonstrates strong robustness to minor modifications and local edits.
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“a Gothic church with
spires, detailed carvings
and flying buttresses”

“a stone table
with a heavy base
and rough texture”

“a stylish furniture piece
with leather and a plush
surface in a natural tone”

“a large
Bengal tiger”

“a cute
Shiba Inu”

“a chair with a
backrest shaped like
a large maple leaf”

Fig. 14. Qualitative comparison of text-guided detailization with input coarse voxels control. Note that even with a simple structure, as shown in the last
column, existing methods fail to produce plausible results when given a creative text prompt.
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A DATA, TEXT PROMPTS AND CODE
We evaluate our model in seven shape categories: chair, table, couch,
bed, building, animal, and cake. We collect 1,505 chairs, 1,292 tables,
300 couches and 300 beds from ShapeNet [Chang et al. 2015], 32
buildings and 16 cakes from 3D Warehouse [Trimble Inc. 2014]
under CC-BY 4.0, and 2,082 animals from Objaverse [Deitke et al.
2023]. We voxelize the 3D shapes as our training set. For building
and cake, we perform data augmentation to obtain 1,200 voxel grids
for each category as our training set.
We use the following text prompts for text-guided detailization.

• “a farmhouse chair with a cross-back design and a natural
wood finish”

• “a Queen Anne chair with a leather back in a light, neutral
tone and a cushioned seat”

• “a metal chair with a leather back and a cushioned seat”
• “a chair with a backrest shaped like a large maple leaf”
• “a Scandinavian-style chair with a clean design and soft fabric

padding”
• “an office-style chair with wheels and a thick seat padding”
• “a rustic wooden chair with a rough texture and a simple,

handcrafted look”
• “a Victorian chair with elegant curves and velvet upholstery”
• “a traditional Japanese palace with tiled roofs and wooden

walls”
• “a Gothic church with spires, detailed carvings, and flying

buttresses”
• “a Russian cathedral with domes and tall spires”
• “a large stone castle with round towers and pointed arches”
• “an Italian basilica with domed roof and arched windows”
• “a castle with cone-shaped tower roofs and brick walls”
• “a stone cathedral with a tall rose window and flying arches”
• “an old German cathedral with timber framing and steep roof”
• “a Gothic church with a bell tower and steep tiled roof”
• “a medieval castle with towers, battlements, and stone walls”
• “a Byzantine cathedral with tall domes, mosaics”
• “a table with a metal frame and a simple wood surface”
• “a luxury marble table with a stone surface”
• “a stone table with a heavy base and rough texture”
• “a folding table with a plastic surface and metal frame”
• “a classic Queen Anne table with a smooth and muted finish”
• “a mid-century modern table with clean lines and angled legs”
• “an industrial style table with a metal frame and a thick wood

top”
• “a cute golden retriever”
• “a cute bulldog”
• “a cute smooth-coated Labrador retriever”
• “a cute Shiba Inu”
• “a wild coyote”
• “a wild grizzly bear”
• “a large Bengal tiger”
• “a robot dog”
• “a cake with chocolate dripping down the sides”

We use the following prompts for cross-category detailization.

• “a classic furniture piece made of polished wood with subtle
details”

• “an old Queen Anne style furniture in a light, neutral tone”
• “a stylish furniture piece featuring leather and a plush surface

in a natural tone”

We will provide the ready-to-use data and code upon publication.

B NETWORK ARCHITECTURE
For the density upsampling network, we use 5 layers of 3D convolu-
tion to extract the features of the input coarse voxel grid, followed
by 2 layers of transposed 3D convolution for upsampling. Each
upsampling layer doubles the input resolution. For the albedo up-
sampling network, we use the same network architecture as the
density upsampling network, except that the final upsampling layer
outputs three channels to represent RGB values.
We use a learning rate of 10−4, a batch size of 1 and Adam opti-

mizer for all experiments.

C EVALUATION METRICS
We use Render-FID and CLIP score to quantitatively evaluate the
quality of the generated shapes from the rendering perspective.
We also use Strict-IoU and Loose-IoU to quantitatively evaluate
the structure consistency of the generated shapes. For the chair
category, we use the test set from DECOLLAGE. For building and
cake categories, we randomly augment voxels to create the test set.
Generating a single shape using CLAY’s commercial product,

Rodin, takes approximately 5 to 10 minutes, while Coin3D requires
about 25 minutes to optimize one shape, which makes both ap-
proaches impractical for large-scale automatic evaluation. There-
fore, we randomly select 8 text prompts. For each text prompt, we
randomly sample 10 coarse voxels from the corresponding test set
to compute the metrics.

Render-FID. For each generated detailed shape, we uniformly ren-
der 4 views at 0, 90, 180, and 270 degrees. For each text prompt,
we first augment it with view-dependent description by append-
ing front view, side view, back view to the end of the prompt. For
each augmented text prompt, We then use Stable Diffusion 2.1 with
stabilityai/stable-diffusion-2-1-base to generate 4 different images.
We compute the FID between the rendered images of the generated
shapes and the images generated from Stable Diffusion.

CLIP score. For each generated detailed shape, we uniformly ren-
der 24 views by rotating the camera around the object with fixed
poses. We then compute the cosine similarity between the CLIP
embeddings of the input text prompt and the rendered images of
the generated shape. We average the score over all the views. We
compute the CLIP score using openai/clip-vit-large-patch14 version
of CLIP model.

CLIPScore =𝑚𝑎𝑥 (100 · 𝑐𝑜𝑠 (𝐸1, 𝐸2), 0) (4)
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Strict-IoU. Given the density field of the generated shape 𝑣𝑑 and
the corresponding input coarse voxel grid 𝑣 , we first voxelize the
density field using a threshold value of 30. We then downsample
it to the same resolution as the input coarse voxel grid, which we
define as 𝑣 ′. We compute the Strict-IoU as follows:

Strict-IoU =
| |𝑣 & 𝑣 ′ | |1
| |𝑣 | 𝑣 ′ | |1

(5)

Loose-IoU. Loose-IoU is the relaxed version of Strict-IoU and we
define it as follows:

Loose-IoU =
| |𝑣 & 𝑣 ′ | |1

| |𝑣 | |1
(6)

D COIN3D IMPLEMENTATION
We use the teddy bear example included in the officially released
code to demonstrate that Coin3D can work on simple structures.
Figure 15 shows the intermediate results and the final output gener-
ated by the officially released code. We also show the intermediate
results and the final output of Coin3D when applied to the complex
structure in Figure 16. Coin3D performs well on simple structures
but struggles to handle more complex ones.

E SHADDR IMPLEMENTATION
Since our method generates the detailed shape is in radiance field
representation, for a fair comparison, we modify one of the ablation
settings in ShaDDR to also produce a radiance field, ensuring a
fair comparison. More specifically, we modify the supervision of
ShaDDR’s texture branch from a 2D discriminator to a 3D discrimi-
nator, which can directly discriminate the output albedo field against
the albedo field of the style shape. We provide the detailed shapes
generated by our method, which are used as styles for training
ShaDDR in Figure 17.

F ADDITIONAL QUANTITATIVE COMPARISONS
Table 3 to 10 show the quantitative comparisons of randomly se-
lected text prompts in our experiments.

G ADDITIONAL QUANTITATIVE ABLATIONS
Table 11 to 18 show the quantitative ablation of using regularization
loss with different 𝜆𝑟𝑒𝑔 on randomly selected text prompts.

H ADDITIONAL QUALITATIVE RESULTS
Figure 18 shows additional results of cross-category detailization.
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Table 3. Quantitative comparison of structural guided geneartion on text
prompt "a farmhouse chair with a cross-back design and a natural wood finish".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
ShaDDR 218.634 17.462 0.502 0.633
Coin3D 202.395 20.413 0.479 0.628
CLAY 178.604 23.634 0.546 0.647
Ours 176.069 24.758 0.510 0.651

Table 4. Quantitative comparison of structural guided geneartion on text
prompt "a Queen Anne chair with a leather back in a light, neutral tone and a
cushioned seat".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
ShaDDR 177.382 25.834 0.572 0.619
Coin3D 218.345 19.371 0.617 0.694
CLAY 185.332 24.182 0.673 0.761
Ours 163.286 28.737 0.682 0.751

Table 5. Quantitative comparison of structural guided geneartion on text
prompt "a metal chair with a leather back and a cushioned seat".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
ShaDDR 194.472 20.273 0.512 0.601
Coin3D 191.389 20.812 0.496 0.598
CLAY 177.283 23.226 0.524 0.618
Ours 173.923 23.239 0.578 0.682

Table 6. Quantitative comparison of structural guided geneartion on text
prompt "a traditional Japanese palace with tiled roofs and wooden walls".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
ShaDDR 221.312 20.283 0.671 0.769
Coin3D 218.126 21.283 0.643 0.737
CLAY 172.284 25.283 0.684 0.792
Ours 165.835 27.264 0.671 0.763

Table 7. Quantitative comparison of structural guided geneartion on text
prompt "a Gothic church with spires, detailed carvings, and flying buttresses".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
ShaDDR 206.925 18.275 0.753 0.815
Coin3D 192.268 20.178 0.639 0.751
CLAY 170.237 23.825 0.692 0.763
Ours 171.235 25.836 0.729 0.797

Table 8. Quantitative comparison of structural guided geneartion on text
prompt "a Russian cathedral with domes and tall spires".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
ShaDDR 211.935 17.237 0.733 0.827
Coin3D 194.126 19.175 0.621 0.756
CLAY 170.003 21.528 0.711 0.819
Ours 172.946 23.730 0.712 0.803

Table 9. Quantitative comparison of structural guided geneartion on text
prompt "a cake with chocolate dripping down the sides".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
ShaDDR 201.274 16.238 0.651 0.779
Coin3D 197.271 18.274 0.529 0.636
CLAY 172.194 24.482 0.612 0.728
Ours 178.836 24.624 0.658 0.785

Table 10. Quantitative comparison of structural guided geneartion on text
prompt "a chair with a backrest shaped like a large maple leaf".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
ShaDDR 182.307 25.437 0.566 0.673
Coin3D 193.561 22.491 0.510 0.627
CLAY 177.284 25.381 0.564 0.668
Ours 171.491 30.184 0.571 0.682
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Table 11. Ablation results on text prompt "a farmhouse chair with a cross-
back design and a natural wood finish".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
𝜆𝑚𝑎𝑠𝑘 = 0 176.304 23.634 0.483 0.627
𝜆𝑚𝑎𝑠𝑘 = 102 177.936 24.237 0.489 0.631
𝜆𝑚𝑎𝑠𝑘 = 103 176.382 23.532 0.507 0.648
𝜆𝑚𝑎𝑠𝑘 = 104 176.069 24.758 0.510 0.651

Table 12. Ablation results on text prompt "a Queen Anne chair with a leather
back in a light, neutral tone and a cushioned seat".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
𝜆𝑚𝑎𝑠𝑘 = 0 163.022 28.281 0.652 0.729
𝜆𝑚𝑎𝑠𝑘 = 102 163.381 27.769 0.658 0.730
𝜆𝑚𝑎𝑠𝑘 = 103 163.836 28.172 0.676 0.747
𝜆𝑚𝑎𝑠𝑘 = 104 163.286 28.737 0.682 0.751

Table 13. Ablation results on text prompt "a metal chair with a leather back
and a cushioned seat".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
𝜆𝑚𝑎𝑠𝑘 = 0 174.197 23.625 0.518 0.633
𝜆𝑚𝑎𝑠𝑘 = 102 173.823 23.116 0.522 0.637
𝜆𝑚𝑎𝑠𝑘 = 103 173.468 23.361 0.569 0.663
𝜆𝑚𝑎𝑠𝑘 = 104 173.923 23.239 0.578 0.682

Table 14. Ablation results on text prompt "a traditional Japanese palace with
tiled roofs and wooden walls".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
𝜆𝑚𝑎𝑠𝑘 = 0 165.963 26.927 0.611 0.706
𝜆𝑚𝑎𝑠𝑘 = 102 165.782 26.694 0.609 0.694
𝜆𝑚𝑎𝑠𝑘 = 103 165.196 26.379 0.652 0.757
𝜆𝑚𝑎𝑠𝑘 = 104 165.835 27.264 0.671 0.763

Table 15. Ablation results on text prompt "a Gothic church with spires, de-
tailed carvings, and flying buttresses".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
𝜆𝑚𝑎𝑠𝑘 = 0 171.397 25.913 0.658 0.746
𝜆𝑚𝑎𝑠𝑘 = 102 170.731 25.612 0.633 0.739
𝜆𝑚𝑎𝑠𝑘 = 103 171.169 25.081 0.689 0.784
𝜆𝑚𝑎𝑠𝑘 = 104 171.235 25.836 0.729 0.797

Table 16. Ablation results on text prompt "a Russian cathedral with domes
and tall spires".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
𝜆𝑚𝑎𝑠𝑘 = 0 171.291 23.172 0.612 0.728
𝜆𝑚𝑎𝑠𝑘 = 102 172.735 23.561 0.633 0.747
𝜆𝑚𝑎𝑠𝑘 = 103 173.013 23.597 0.684 0.793
𝜆𝑚𝑎𝑠𝑘 = 104 172.946 23.730 0.712 0.803

Table 17. Ablation results on text prompt "a cake with chocolate dripping
down the sides".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
𝜆𝑚𝑎𝑠𝑘 = 0 177.304 23.812 0.609 0.716
𝜆𝑚𝑎𝑠𝑘 = 102 177.782 24.018 0.603 0.701
𝜆𝑚𝑎𝑠𝑘 = 103 178.423 24.184 0.643 0.769
𝜆𝑚𝑎𝑠𝑘 = 104 178.836 24.624 0.658 0.785

Table 18. Ablation results on text prompt "a chair with a backrest shaped like
a large maple leaf".

Render-FID ↓ CLIP score ↑ Strict-IoU ↑ Loose-IoU ↑
𝜆𝑚𝑎𝑠𝑘 = 0 171.622 30.383 0.533 0.659
𝜆𝑚𝑎𝑠𝑘 = 102 171.293 29.962 0.526 0.642
𝜆𝑚𝑎𝑠𝑘 = 103 170.932 29.075 0.566 0.663
𝜆𝑚𝑎𝑠𝑘 = 104 171.491 30.184 0.571 0.682
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(a) Rendering of the input coarse proxy (b) Single-view image

(c) Multi-view images

(d) Rendering of NeuS reconstruction

Fig. 15. Coin3D reproduction experiment with teddy bear coarse proxy and text prompt "a lovely teddy bear". We show (a) the rendering of the input coarse
proxy, (b) the single-view image generated by 2D ControlNet conditioned on the text prompt a lovely teddy bear, (c) the generated multi-view images and (d)
the rendered images of NeuS reconstruction.
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(a) Rendering of the input coarse proxy (b) Single-view image

(c) Multi-view images

(d) Rendering of NeuS reconstruction

Fig. 16. Coin3D applied to a complex chair structure with text prompt "a chair with a backrest shaped like a large maple leaf". We show (a) the rendering of the
input coarse proxy, (b) the single-view image generated by 2D ControlNet conditioned on the text prompt a lovely teddy bear, (c) the generated multi-view
images and (d) the rendered images of NeuS reconstruction.
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“a Gothic church with
spires, detailed carvings
and flying buttresses”

“a stone table
with a heavy base
and rough texture”

“a stylish furniture piece
with leather and a plush
surface in a natural tone”

“a large
Bengal tiger”

“a cute
Shiba Inu”

“a chair with a
backrest shaped like
a large maple leaf”

Fig. 17. We show the detailed shapes generated by our method, which are used as styles shapes for training ShaDDR. These detailed shapes are of good
quality and suitable for training ShaDDR.

“a classic furniture piece made of
polished wood with subtle details”

“an old Queen Anne style
furniture in a light, neutral tone”

Fig. 18. Additional results of cross-category detailization. We show a collection of coarse voxels from the chair, table, couch, and bed classes on the top and
the detailed shapes on the bottom. Our method can generate structurally varying shapes spanning multiple furniture categories with a consistent style.
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