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We present GenAnalysis, an implicit shape generation framework that allows
joint analysis of man-made shapes, including shapematching and joint shape
segmentation. The key idea is to enforce an as-affine-as-possible (AAAP)
deformation between synthetic shapes of the implicit generator that are
close to each other in the latent space, which we achieve by designing a reg-
ularization loss. It allows us to understand the shape variation of each shape
in the context of neighboring shapes and also offers structure-preserving in-
terpolations between the input shapes. We show how to extract these shape
variations by recovering piecewise affine vector fields in the tangent space of
each shape. These vector fields provide single-shape segmentation cues. We
then derive shape correspondences by iteratively propagating AAAP defor-
mations across a sequence of intermediate shapes. These correspondences
are then used to aggregate single-shape segmentation cues into consistent
segmentations. We conduct experiments on the ShapeNet dataset to show
superior performance in shape matching and joint shape segmentation over
previous methods.
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1 INTRODUCTION

Shape analysis, is a fundamental research area in geometry process-
ing that enjoys many applications [Mitra et al. 2014; Xu et al. 2017].
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consistent segmentation

shape matching

as-affine-as-possible deformation

Fig. 1. GenAnalysis learns a shape manifold from a collection of man-made
shapes with a novel as-affine-as-possible deformation regularization loss.
The learned shape manifold supports shape analysis by analyzing the tan-
gent space of each shape, shape matching through intermediate shapes on
this manifold, and consistent segmentation by aggregating single-shape
analysis results using inter-shape correspondences.

Existing shape analysis approaches fall into the categories of su-
pervised and unsupervised methods. Although supervised methods
achieved state-of-the-art results, they require user labels, which are
costly to obtain and do not scale up. In contrast, unsupervised shape
analysis methods [Chen et al. 2024; Deng et al. 2021; Shuai et al.
2023] benefit from learning from large-scale unlabeled shapes and
have recently shown promising results in the large-scale ShapeNet-
Part [Yi et al. 2016] dataset.
The fundamental challenge in developing unsupervised tech-

niques is to accommodate significant structural and geometric vari-
ations across the input shapes. A popular paradigm is learning
template-based models in which each template consists of a bag of
(non-rigidly) deforming parts. The learning phase learns parameters
of the templates to fit the training data. These include early works
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of [Averkiou et al. 2014; Huang et al. 2015a,b; Kim et al. 2013; Ovs-
janikov et al. 2011] and recent deep learning methods [Chen et al.
2024; Deng et al. 2021; Deprelle et al. 2019; Ganapathi-Subramanian
et al. 2018; Genova et al. 2019a; Shuai et al. 2023; Zheng et al. 2021].
The key advantage of template-based models is that during the test-
ing phase it is only required to fit template to each shape, which
is efficient and simple. However, template-based models exhibit
two major limitations. First, template-based models rely on prior
knowledge of shape parts (e.g., the number of parts and their spatial
locations) either explicitly or implicitly. Second, the learning and
inference phases can easily get stuck in local minimums.
In this paper, we introduce a novel shape analysis framework,

named GenAnalysis, which learns an implicit shape generative
model to fit the training shapes. We will show how to use this
template-free shape generative model to perform shape analysis,
hence circumventing the limitation of template-based models. Our
approach is inspired by the success of studying organic shape collec-
tions using the lens of shape spaces as differential manifolds [Hart-
man et al. 2023; Kilian et al. 2007; Klassen et al. 2004; Srivastava
et al. 2011; Yang et al. 2023a]. Moreover, recent advances in shape
generative models [Atzmon and Lipman 2021; Chen and Zhang
2019; Mescheder et al. 2019; Park et al. 2019; Yang et al. 2024] can
accurately fit man-made training shapes that exhibit much larger
geometric variations than organic shapes. These learned continuous
man-made shape spaces offer novel means of shape analysis. Specif-
ically, they provide smooth interpolations between two shapes that
can be used to compute shape correspondences. Moreover, when
trained properly,these generative models enable us to understand
the shape variations among the shape collection for shape segmen-
tation by analyzing shape variations in the tangent space of each
shape when viewing the learned generative models as shape mani-
folds. This continuous shape-space approach greatly alleviates the
local minimum issue in template-based approaches.

However, learning a shape generative model is under-constrained,
as there are many possible network parameters and latent codes of
training shapes that fit the training data. Learning shape generative
models under generic distribution alignment paradigms [Goodfel-
low et al. 2020; Kingma and Welling 2014; Zhang et al. 2023] do
not result in shape generators that offer meaningful intermediate
shapes and tangent spaces for shape matching and shape segmen-
tation. Unlike deformable objects in which isometric deformations
offer faithful deformation priors, the structural shape variations in
man-made shapes are too complex to be summarized into a concise
universal principle. The suitable regularization losses are heavily
dependent on the application scenarios.
GenAnalysis introduces a novel regularization loss for learning

the shape generator. This loss is tailored for shape analysis. The pro-
posed loss builds on the popular piece-wise affine assumption [Chen
et al. 2024; Huang et al. 2015a; Kim et al. 2013; Ovsjanikov et al. 2011;
Xu et al. 2010], in which if we abstract each shape part using
a bounding box, then the deformations at the part level are
affine (see Figure 2). However, the challenge is how to model the
significant shape variations within each part. GenAnalysis presents
two strategies to address this challenge. First, we minimize the
piece-wise affine deformation between adjacent synthetic shapes

𝐴𝑖

Fig. 2. Piece-wise affine assumption. Each shape part from source shape,
approximated by its bounding box, undergoes a separate affine transforma-
tion 𝐴𝑖 to the corresponding part in the target shape.

defined by the generator (i.e., they are close in the latent space).
This approach is analogous to the smoothness loss in curve fitting,
but we model strong prior knowledge about inter-shape deforma-
tions. In particular, we show how to employ an as-affine-as-possible
deformation loss under a robust norm to fulfill the piece-wise affine
assumption. Second, we describe a weighting scheme for test-time
optimization [Chen et al. 2022; Niu et al. 2022b; Wang et al. 2021,
2023]. It prioritizes that the regularization loss distributes deviations
of piece-wise affine deformations away from shapes of interest. This
allows us to extract segmentation cues by analyzing the tangent
space of each shape (i.e., vector fields that characterize differences
between each shape and its adjacent shapes in the latent space).

We have evaluated the performance of GenAnalysis on ShapeNet
for the task of shape matching and consistent shape segmentation.
In both tasks, GenAnalysis outperforms state-of-the-art techniques
by salient margins, justifying the power of performing shape anal-
ysis by learning shape generators. For example, GenAnalysis out-
performs DAE-Net [Chen et al. 2024] by 3.2% in mean IOU score.
An ablation study justifies the importance of each component of
GenAnalysis.

2 RELATED WORK

2.1 Neural Generative Models for Man-Made Shapes

Recent advances in learning generative shape models have shown
impressive results in shape synthesis. These approaches have fo-
cused on developing network architectures under different 3D repre-
sentations [Achlioptas et al. 2018; Li et al. 2017; Longwen et al. 2024;
Mo et al. 2019; Park et al. 2019; Siddiqui et al. 2024; Wu et al. 2016].
A common scheme is to align the distribution of the training shapes
with that of the synthetic shapes [Arjovsky et al. 2017; Bouritsas
et al. 2019; Goodfellow et al. 2020; Litany et al. 2018; Park et al.
2019; Ranjan et al. 2018; Song and Ermon 2019; Song et al. 2021;
Yang et al. 2018; Zadeh et al. 2019]. However, these approaches are
limited when the training shapes are sparse. An approach to address
this data issue is to develop regularization losses that enforce prior
knowledge about the underlying shape space [Atzmon et al. 2021;
Gropp et al. 2020; Huang et al. 2021; Liu et al. 2022; Muralikrish-
nan et al. 2022; Yang et al. 2024]. The novelties of GenAnalysis are
addressing man-made shapes that have large shape variations and
learning the shape generator to promote simple extractions of shape
segmentation cues in the tangent space of each shape.
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2.2 Data-Driven Shape Segmentation

A common paradigm among non-deep learning-based joint shape
segmentation approaches [Golovinskiy and Funkhouser 2009; Hu
et al. 2012; Huang et al. 2011, 2019, 2014; Sidi et al. 2011; Wang
et al. 2013, 2014] is to promote the segmentation of each shape
to be consistent in a shape collection, using point-wise correspon-
dences [Huang et al. 2011], primitive-level correspondences [Hu et al.
2012; Huang et al. 2011; Sidi et al. 2011], or functional maps [Huang
et al. 2019, 2014; Ovsjanikov et al. 2012; Wang et al. 2013, 2014].
However, these approaches only exhibit limited performance in
heterogeneous shape collections, where computing consistent cor-
respondences between structurally dissimilar shapes is challenging.
Deep learning based methods are introduced to handle joint

shape segmentation for its improved generalization ability on het-
erogeneous shape collection. Most of the methods for learning con-
sistent segmentation are supervised learning [Kalogerakis et al.
2017; Qi et al. 2017a,b; Zhao et al. 2019]. To alleviate the need for
3D annotation, unsupervised methods learn deformable part tem-
plates to reconstruct input shapes for shape segmentation. These
approaches use a variety of part abstractions, including cuboids [Sun
et al. 2019; Tulsiani et al. 2017; Yang and Chen 2021], superquadrat-
ics [Paschalidou et al. 2019], part point clouds [Huang et al. 2015a],
convex polygons [Chen et al. 2020; Deng et al. 2020], sphere tem-
plates [Paschalidou et al. 2021] and implicit templates [Chen et al.
2024, 2019; Niu et al. 2022a]. Part deformations can also be encoded
explicitly [Huang et al. 2015a] or implicitly using neural network
branches [Chen et al. 2024, 2019; Paschalidou et al. 2021; Shuai et al.
2023; Tertikas et al. 2023]. However, they still require some prior
knowledge of the underlying part structure, e.g., the number of parts.
The designed template often exhibits limited performance when
expressing complex variations in each shape part. GenAnalysis cir-
cumvents the limitations of template-based approaches in two ways.
First, as we will discuss next, GenAnalysis presents dense shape
correspondences between shapes with large structural variations to
aggregate shape segmentation cues. Second, GenAnalysis enforces
the prior knowledge about shape parts using a regularization loss.
The regularization loss is enforced on adjacent synthetic shapes and
tolerates large inter-shape variations.
Several approaches, including STAR [Abdelreheem et al. 2023],

3D Highlighter [Decatur et al. 2023], and follow-up methods [Cen
et al. 2023; Kontogianni et al. 2023; Lang et al. 2024; Yang et al.
2023b], have explored 3D segmentation using vision-language mod-
els (VLM) [Alayrac et al. 2022; Ravi et al. 2024; Zhang et al. 2022].
The key idea is to lift 2D features from off-the-shelf CLIP [Radford
et al. 2021], GLIP [Li et al. 2022; Zhang et al. 2022], and SAM [Kirillov
et al. 2023] models. One challenge of these approaches is to enforce
multi-view consistency and address occlusions. Complementary to
lifting 2D features, GenAnalysis is a 3D approach that focuses on
consistent segmentation using a shape generative model.

2.3 Shape Matching and Deformation Models

Computing correspondences between geometric shapes is a long-
standing problem in computer graphics. It is beyond the scope of this
paper to provide a comprehensive review. We refer to [Sahillioglu

2020; Tam et al. 2013b; van Kaick et al. 2010] for surveys on this topic.
Most approaches [Boscaini et al. 2016; Kim et al. 2011; Melzi et al.
2019] deal with deformable shapes assume that they have consistent
topologies and full dense correspondences are well-defined. Such ap-
proaches do not apply to man-made shapes with complex structure
variations where dense correspondences are partially defined.

A closely related problem to correspondence computation is non-
rigid shape registration [Tam et al. 2013a], which deforms a source
shape under some deformationmodel tomatch a target shape. In this
context, the deformation model plays a key role. The most widely
used deformation models are as-rigid-as-possible (ARAP) [Alexa
et al. 2000; Huang et al. 2021; Sorkine and Alexa 2007] and as-
conformal-as-possible (ACAP) [Yang et al. 2023a; Yoshiyasu et al.
2014] models. These models are mostly used for organic shapes but
not for man-made shapes that exhibit sophisticated part deforma-
tions. For man-made shapes, a widely used assumption is piece-wise
affine, which has been used in template-based models, that consists
of rectangular bounding boxes. GenAnalysis shows how to apply the
idea of non-rigid shape registration to find correspondences across
man-made shapes. This is achieved by using a robust as-affine-as-
possible deformation model to enforce the piece-wise affine defor-
mation and performing non-rigid registrations between adjacent
synthetic shapes of a man-made shape generator. The idea of op-
timizing an interpolation between two shapes for shape matching
has also been explored in NeuroMorph [Eisenberger et al. 2021] and
GenCorres [Yang et al. 2024], both of which study organic shapes.
In contrast, GenAnalysis focuses on man-made shapes which have
much more complex geometric variations, where the deformation
models of NeuroMorph and GenCorres do not apply.

In contrast to template-based approaches [Deng et al. 2021; Gen-
ova et al. 2019b; Kim et al. 2023; Zheng et al. 2021] for made-made
shapes, GenAnalysis exhibits improved performance on heteroge-
neous shape collections. This is because template-based models may
not be expressive enough and/or the learning procedure can get
trumped into local minimums.

3 PROBLEM STATEMENT AND APPROACH OVERVIEW

This section presents the problem statement (Section 3.1) and an
overview of GenAnalysis (Section 3.2).

3.1 Problem Statement

The input to GenAnalysis is a collection of training man-made
shapes S = {𝑆𝑖 } ⊂ S where S denotes the ambient shape space.
GenAnalysis aims to learn a generative model that enables two
fundamental shape analysis tasks on a collection of test shapes
Stest:

• Joint Shape Segmentation. For each test shape 𝑆 ∈ Stest, we
want to decompose it into parts based on the underlying
shape variations provided by S.

• Shape Correspondence. Given a test source shape 𝑆 ∈ Stest,
a test target shape 𝑆 ′ ∈ Stest, and a point 𝒑 in 𝑆 , we want
to calculate its correspondence in 𝑆 ′. The output indicates
whether this correspondence is well defined (due to partial
similarities) and, if so, the corresponding point.
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𝒛 𝑔𝜃

(a) (b) (c) (d)

intra-shape cues

inter-shape cues

Co-seg.

Fig. 3. The pipeline of GenAnalysis pipeline, which consists of four stages. (a) The first stage learns an implicit shape generator to fit the input shapes by
combing a data loss and an as-affine-as possible deformation loss. (b) The second stage extracts piece-wise affine structures in vector fields of each shape
derived from the tangent space of each shape. (c) The third stage computes pairwise shape correspondences obtained by composing correspondences along
intermediate shapes defined by the generator. Points with similar color are in correspondence. (d) The last stage performs consistent segmentation using the
correspondences obtained in stage three to integrate single-shape segmentation cues derived from stage two.

3.2 Approach Overview

GenAnalysis proceeds in four stages (see Figure 3 for an illustration).

3.2.1 Shape Generator Learning. The first stage learns an implicit
shape generator from S. We introduce a novel regularization loss
to enforce piece-wise affine deformations between synthetic shapes
that are close to each other in the latent space. The loss employs
an as-affine-as-possible (AAAP) deformation model under the 𝐿2
norm for correspondence computation and the same AAAP model
under a robust norm to enforce piece-wise affine deformations.
Network training integrates this regularization loss into a standard
auto-decoder paradigm. In addition, we introduce a light-weight
test-time optimization step to improve the alignment between the
generative model and test shapes and distribute distortions of the
piece-wise affine assumption away from the tangent spaces at test
shapes. This weighting scheme facilitates the analysis of the tangent
space at each test shape to extract shape segmentation cues.

3.2.2 Shape Variation Analysis. The second stage analyzes the tan-
gent spaces of the learned shape manifold. The tangent space of
each shape encodes the shape variations in its infinitesimal neigh-
boring shape space. The regularization loss employed in stage one
prioritizes that this tangent space contains variation vector fields
that exhibit piece-wise affine structures. We present a spectral ap-
proach to extract such vector fields and show how to analyze their
underlying piece-wise affine structures to derive a distance matrix,
in which the distance between two points is small if they belong to
the same part and vice versa. Figure 8 (Left) shows some examples
of the extracted vector fields.

3.2.3 Shape Matching. The third stage of GenAnalysis computes
shape correspondences between pairs of test shapes. We show that
unlike matching pairs of shapes directly, which leads to poor re-
sults under large shape variations, GenAnalysis propagates corre-
spondences derived from AAAP deformation between intermediate
shapes interpolated from the learned deformation model. The propa-
gation procedure combines displacement and projection operations
to ensure that the propagated correspondences lie on intermediate
shapes. The resulting correspondences will also be used to aggregate
single-shape segmentation cues from the second stage.

3.2.4 Consistent Segmentation. The last stage of GenAnalysis per-
forms a consistent segmentation. We formulate a spectral-based
consistent segmentation approach that integrates the single-shape
segmentations derived from shape variation analysis using inter-
shape correspondences.

4 APPROACH

This procedure describes four stages of GenAnalysis in detail (from
Section 4.1 to Section 4.4).

4.1 Shape Generator Learning

The main goal for learning the shape generative model is to en-
force a deformation loss between adjacent synthetic shapes. Implicit
deformation regularizations exist in the literature. One notable ex-
ample is the Killing formulation [Kraevoy et al. 2008; Slavcheva et al.
2017] for as-rigid-as-possible (ARAP) deformation, in which the
Jacobian of the implicit field is askew-symmetric. However, this ap-
proach does not apply to the affine setting, in which we do not have
any constraint on the Jacobian. To address this issue, our approach
turns an implicit generation model into an explicit one locally by
computing dense correspondences between adjacent synthetic sur-
faces (see Section 4.1.1). These correspondences give us flexibility in
enforcing the piece-wise affine assumption, and we define a regular-
ization loss using a robust AAAP model to learn the shape generator
(see Section 4.1.2). In addition, we present a lightweight test-time
optimization strategy for test shapes in Section 4.1.3.

4.1.1 AAAP deformation induced correspondences. We first explain
how to compute the correspondences between adjacent surfaces of
an implicit generator model 𝑔𝜃 (𝒙, 𝒛) : R3 × Z → R that outputs
the signed distance function (SDF) value at 𝒙 of the underlying 3D
shape with the latent code 𝒛 ∈ Z � R𝑞 (𝑞 = 256 in our experiments).
We focus on an AAAP model for man-made shapes.

To this end, we first discretize 𝑔𝜃 (𝒙, 𝒛) = 0 using a mesh with 𝑛 ≈
2000 vertices 𝒑𝜃

𝑖
(𝒛), 1 ≤ 𝑖 ≤ 𝑛, e.g., via Marching Cube [Lorensen

and Cline 1987]. To define the AAAP deformation model, our goal
is to determine the corresponding location 𝒑𝜃

𝑖
(𝒛 + 𝜖𝒗) on the neigh-

boring implicit surface 𝑔𝜃 (𝒙, 𝒛 + 𝜖𝒗) = 0, where 𝒗 is the direc-
tion of the perturbation and 𝜖 = 10−3 is an infinitesimal value.
We approximate 𝒑𝜃

𝑖
(𝒛 + 𝜖𝒗) via the first-order Taylor expansion
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(a) (b) (c) (d) (e)

Z

𝒛
𝒗

𝒛 + 𝜖𝒗

𝑔𝜃 (𝒙, 𝒛 + 𝜖𝒗 ) = 0

𝒑𝜃
𝑖
(𝒛 ) + 𝜖𝒅𝒗

𝑖
(𝒛 )

𝑣1

𝑣2
𝑣3

𝑣4𝒅𝒗1 (𝒛)

𝒅𝒗2 (𝒛)

𝒅𝒗3 (𝒛)

𝒅𝒗4 (𝒛)

𝒛

𝒑𝜃
𝑖
(𝒛 + 𝜖𝒗 ) ≈ 𝒑𝜃

𝑖
(𝒛 ) + 𝜖𝒅𝒗

𝑖
(𝒛 )

Fig. 4. As-affine-as-possible (AAAP) regularization. (a) We study infinitesimal perturbation 𝒗 in the tangent space at each shape with latent code 𝒛. (b)
Due to constraint shown in Eq. (1), we can not determine the correspondence 𝒅𝒗

𝑖 (𝒛 ) that lies on 𝑔𝜃 (𝒙, 𝒛 + 𝜖𝒗 ) = 0 directly. (c) We instead jointly compute all
𝒅𝒗
𝑖 (𝒛 ) by solving an constrained optimization problem using the objective function in Eq. (2). (d) We show resulting 3D correspondences between source

shape colored in white, and a neighboring perturbed shape colored in transparent blue. (e) After derivation in section 4.1.1, we arrived at closed form solution
shown in Eq. (5) where each perturbation 𝑣𝑖 corresponds to variation at 𝒅𝒗𝒊 (𝒛 ) . We integrate over all directions to obtain the regularization term in Eq. (8).

𝒑𝜃
𝑖
(𝒛 + 𝜖𝒗) ≈ 𝒑𝜃

𝑖
(𝒛) + 𝜖𝒅𝒗𝑖 (𝒛). By computing the derivative of the

implicit function 𝑔𝜃 (𝒑𝜃
𝑖
(𝒛 + 𝜖𝒗), 𝒛 + 𝜖𝒗) = 0 with respect to 𝒗 using

the chain rule, we arrive at the following linear constraint of 𝒅𝒗𝑖 (𝒛):

𝜕𝑔𝜃

𝜕𝒙

(
𝒑𝜃𝑖 (𝒛), 𝒛

)𝑇 𝒅𝒗𝑖 (𝒛) + 𝜕𝑔𝜃

𝜕𝒛

(
𝒑𝜃𝑖 (𝒛), 𝒛

)𝑇 𝒗 = 0. (1)

As shown in Figure 4(b), the technical challenge is that the im-
plicit surface representation only provides one constraint on the 3D
displacement vector 𝒅𝒗𝑖 (𝒛). To address the uniqueness problem, we
solve a linearly constrained optimization problem [Tao et al. 2016;
Yang et al. 2024] to find 𝒅𝒗𝑖 (𝒛) jointly.

Specifically, we associate each vertex 𝒑𝜃
𝑖
(𝒛) with a local trans-

formation 𝐼3 + 𝐴𝑖 ∈ R3×3, where 𝐴𝑖 encodes the deviation of this
transformation from the identity transformation. For the sake of
optimization, we reparameterize 𝐴𝑖 = 𝑠𝑖 𝐼3 + 𝒄𝑖 × +𝑅(𝒂𝑖 ), where
𝑠𝑖 𝐼3 and 𝒄𝑖× define scaling and rotation components, respectively;
𝑅(𝒂𝑖 ) denotes the remaining component in the matrix space that
is orthogonal to conformal matrices, and 𝒂𝑖 ∈ R5 is the coefficient
vector under an orthonormal basis of this space (see Appendix A in
the supp. material). A nice property of this parametrization is that
it is easy to regularize 𝐴𝑖 using quadratic objective terms.
Let N𝑖 denote the neighbors of the vertex 𝑖 and itself. Let vec-

tors 𝒑𝜃 (𝒛) ∈ R3𝑛 and 𝒅𝒗 (𝒛) ∈ R3𝑛 concatenate 𝒑𝜃
𝑖
(𝒛) and 𝒅𝒗𝑖 (𝒛),

respectively. We model the deformation energy between them as

𝑒
(
𝒑𝜃 (𝒛), 𝒅𝒗 (𝒛)

)
:=min

{𝐴𝑖 }

𝑛∑︁
𝑖=1

( ∑︁
𝑗∈N𝑖

∥𝐴𝑖
(
𝒑𝜃𝑖 (𝒛) − 𝒑𝜃𝑗 (𝒛)

)
−

(
𝒅𝒗𝑖 (𝒛) − 𝒅𝒗𝑗 (𝒛)

)
∥2 +

(
𝜇𝑟 𝑠

2
𝑖 + 𝜇𝑠 ∥𝒂𝑖 ∥

2) ) (2)

where 𝜇𝑟 = 1 and 𝜇𝑠 = 1 are regularization parameters. Our experi-
ments show that the regularization effects remain similar in a large
range of 𝜇𝑟 and 𝜇𝑠 . On the other hand, regularization is important
since otherwise 𝐴𝑖 maybe degenerate, e.g., on flat regions.
We introduce 𝒚 ∈ R9𝑛 where 𝒚𝑖 = (𝑠𝑖 ; 𝒄𝑖 ; 𝒂𝑖 ) collects the affine

transformation parameters for each 𝐴𝑖 at 𝒑𝜃𝑖 (𝒛). It is clear that
𝑒
(
𝒑𝜃 (𝒛), 𝒅𝒗 (𝒛)

)
is quadratic in𝒚 and 𝒅𝒗 (𝒛). Therefore, the resulting

𝑒
(
𝒑𝜃 (𝒛), 𝒅𝒗 (𝒛)

)
could be written as

𝑒
(
𝒑𝜃 (𝒛), 𝒅𝒗 (𝒛)

)
= 𝒅𝒗 (𝒛)𝑇 𝐿𝜃 (𝒛)𝒅𝒗 (𝒛), (3)

and the optimal solution

𝒚★ = 𝐵𝜃 (𝒛)𝒅𝒗 (𝒛) (4)

where both 𝐿𝜃 (𝒛) ∈ R3𝑛×3𝑛 and 𝐵𝜃 (𝒛) ∈ R9𝑛×3𝑛 are sparse matri-
ces (see Appendix A in the supp. material).
With this setup, we can then minimize the quadratic energy in

Eq. (3) with respect to the linear constraints in Eq. (1). This leads to
the optimal displacement vector

𝒅𝒗 (𝒛) = 𝑀𝜃 (𝒛)𝒗 . (5)

where𝑀𝜃 (𝒛) ∈ 𝑅3𝑛×𝑞 can be computed efficiently by LU-factorization
of a sparse matrix (see Appendix A in the supp. material).
Figure 5 shows the effects of this AAAP deformation model to

find correspondences between shapes that exhibit large piece-wise
affine deformations. Note that even if the term residuals of a piece-
wise affine deformation exhibit a heavy-tail distribution and should
be modeled using a robust norm, the resulting correspondences
are accurate under the 𝐿2 norm. However, we will see immediately
that using a robust norm to formulate the deformation loss on the
correspondences for learning the shape generator is important.

Fig. 5. Effectiveness of the AAAP formulation for identifying correspon-
dences between two implicit shapes that have two parts, each of which
undergoes an affine transformation. Correspondence errors are color-coded.
(Left) The source shape is colored in black. The target shape is colored in
red. (Middle) Deform the source shape to align with the target shape under
the AAAP model, resulting in accurate correspondences. (Right) Correspon-
dences drift under the ACAP model, i.e., 𝒂𝑖 = 0. Errors are color coded.
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Fig. 6. Comparison between using different norms to optimize the interpola-
tion between two implicit shapes in Figure 5. Deviations from the underlying
piece-wise affine interpolation are color coded. (Left) Interpolation using
the 𝐿2 norm deviates from piece-wise affine. (Right) Interpolation using the
robust norm is piecewise affine.

with AAAP reg.w/o AAAP reg.

Fig. 7. Shape interpolations from the shape generator. (Left)Without AAAP
regularization, the intermediate shapes may not preserve part structures.
(Right) With AAAP regularization, the part structures are preserved.

4.1.2 Shape Generator Learning. The training objective for learning
the implicit shape generator 𝑔𝜃 is given by

min
𝜃

1
|S|

∑︁
𝑆∈Strain

𝑙data
(
𝑆, 𝑔𝜃 (·, 𝒛𝑆 )

)
+ 𝜆KL𝑙KL

(
{𝒛𝑆 },N(0, 𝐼𝑑 )

)
+ 𝜆𝑑 E

𝒛∼N(0,𝐼𝑞 )
𝑟 (𝜃, 𝒛) . (6)

The first term 𝑙data (·, ·) in Eq. (6) aligns the generator with the input
shapes. Given an input shape 𝑆 , let P𝑆 = {(𝒑, 𝑠)} collect samples
𝒑 and their corresponding SDF values 𝑠 using the DeepSDF [Park
et al. 2019] strategy. We define the data term as

𝑙data (𝑆, 𝑔𝜃 (·, 𝒛𝑆 )) =
∑︁

(𝒑,𝑠 ) ∈𝑃𝑆
|𝑔𝜃 (𝒑, 𝒛𝑆 ) − 𝑠 |2 . (7)

The second term 𝑙KL (·, ·) aligns the empirical latent distribution
defined by the training shapes and the prior Gaussian distribution
under the KL divergence measure. This enables us to define regular-
izations on latent codes sampled from the Gaussian distribution.

The third term 𝑟 (·, ·), which is a key contribution of GenAnalysis,
enforces AAAP deformations between adjacent synthetic shapes. To
formulate 𝑟 (·, ·), we use Eq. (5), which offers an explicit parameteri-
zation of 𝑔𝜃 (𝒙, 𝒛′) = 0 for latent codes 𝒛′ in the local neighborhood
of 𝒛. Let {𝐴𝑖 } be the latent transformations decoded from Eq. (4).

𝑤1 = 1 𝑤2 = 0.1 𝑤3 = 0.1

𝑤1 = 1 𝑤2 = 1 𝑤3 = 1

Fig. 8. Interpolations between the left shape and the right shape that using
a path of two intermediate shapes. The underlying deformation deviates
from the piece-wise affine assumption. We minimize AAAP deformations
between adjacent shapes. (Top) Using uniform weights (1, 1, 1) for three
shape pairs. The deformations of all shape pairs deviate from piece-wise
affine. (Bottom) The weights are (1, 0.1, 0.1) where the first pair has a large
weight. The deformation of the first pair is close to piece-wise affine.

We define the structure-preserving regularization term 𝑟 (𝜃, 𝒛) to
enforce that 𝒅𝒗 (𝒛) admits a piece-wise affine structure via

𝑟 (𝜃, 𝒛) :=
∫
𝒗∈B𝑞

𝑛∑︁
𝑖=1

∑︁
𝑗∈N𝑖

𝑟𝛼𝑖 𝑗 (𝒛, 𝒗)𝑑𝒗, (8)

𝑟𝑖 𝑗 (𝒛, 𝒗) := ∥𝐴𝑖
(
𝒑𝜃𝑖 (𝒛) − 𝒑𝜃𝑗 (𝒛)

)
−

(
𝒅𝒗𝑖 (𝒛) − 𝒅𝒗𝑗 (𝒛)

)
∥.

where B𝑞 is the unit ball in R𝑞 . We set 𝛼 = 1 to promote a heavy-
tailed distribution in 𝑟𝛼

𝑗𝑘
(𝒛, 𝒗), which models piece-wise affine defor-

mations. Figure 6 shows that the robust norm is critical in obtaining
the underlying piece-wise affine interpolations between two implicit
shapes.

Figure 7 shows the effectiveness of this regularization term, which
preserves part structures. In particular, it addresses the challenge of
preserving thin-structures under implicit representations.

4.1.3 Test-Time Optimization. Inspired by the success of test-time
optimization [Chen et al. 2022; Niu et al. 2022b; Wang et al. 2021,
2023], we present a test-time optimization approach on a collec-
tion of test shapes Stest, so that 1) the generator offers improved
reconstructions of these shapes, and 2) the tangent spaces at these
shapes contain displacement fields that exhibit piece-wise affine
structures suitable for shape analysis. Our key idea to achieve 2) is
to introduce a weight in front of 𝑟 (𝒛, 𝜃 ) to distribute the distortions
of piece-wise affine deformations. Specifically, for the shape 𝑆 of
interest, we set 𝑤 (𝒛𝑆 ) = 1 and use a small weight 𝑤 (𝒛) when the
distance between 𝒛 and 𝒛𝑆 becomes large. Figure 8 shows the effects
of using this weighting scheme. When the deformation between
two shapes has non piece-wise affine components, we can enforce
that the deformation between the source shape and its adjacent
interpolation is piece-wise affine by using a large weight.

Now, let us describe the test-time optimization loss. Let 𝒛0
𝑆
be the

latent code of 𝑆 ∈ Stest under the pre-trained generator. Test-time
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Fig. 9. (Left) Leading vector fields of example shapes. (Right) Visualizations
of distance functions of samples colored in purple, The distance function
shows the vector field is piece-wise part awareness. Samples from the same
shape part has have smaller distance under affine fitting than samples from
different parts.

optimization amounts to solve the following optimization problem:

min
𝜃

1
|Stest |

∑︁
𝑆∈Stest

(
𝑙data

(
𝑆, 𝑔𝜃 (·, 𝒛0𝑆 )

)
+ 𝜇

∫
𝒛∈B𝑞 (𝒛0

𝑆
,𝑐1 )

exp(−
∥𝒛 − 𝒛0

𝑆
∥

2𝑐22
)𝑟 (𝜃, 𝒛)𝑑𝒛

)
(9)

where B𝑞 (𝒛0
𝑆
, 𝑐1) is the ball centered at 𝒛0

𝑆
with radius 𝑟1. We set

𝑐2 =
1
3𝑐1 and 𝑐1 is the median of the shortest distance between the

latent code of each test shape and the training shapes. In addition,
𝜇 = 10−1.

4.2 Shape Variation Analysis

The second stage of GenAnalysis analyzes the variations of each
shape derived from the learned shape generator in the first stage.
For each shape 𝑆 , let P𝑆 = {𝒑𝑖 } be 𝑛 samples on the surface of the
corresponding reconstruction 𝑔𝜃 (·, 𝒛𝑆 ). We summarize the analysis
result in a distance matrix 𝐷P𝑆 ∈ R𝑛×𝑛 among all sample points
where a small distance indicates that the two corresponding samples
belong to the same underlying part.
We compute 𝐷P𝑆 by analyzing piece-wise affine structures in

vector-fields 𝒖𝑙 = 𝑀𝜃 (𝒛𝑆 )𝒗𝑙 , 1 ≤ 𝑙 ≤ 𝐿 of P𝑆 (𝐿 = 20 in our
experiments), where𝑀𝜃 (𝒛𝑆 ) is introduced in Eq.(5). Motivated by
the modal analysis framework described in ([Huang et al. 2009]),
we compute 𝒗𝑙 , 1 ≤ 𝑙 ≤ 𝐿 as the smallest eigenvectors of

𝐻𝜃 (𝒛𝑆 ) = 𝑀𝜃 (𝒛𝑆 )
𝑇
𝐿𝜃 (𝒛𝑆 )𝑀𝜃 (𝒛𝑆 ) .

The behavior of 𝒖𝑙 is similar to the spectral embedding characterized
by leading eigenvectors of a graph Laplacian in which points of the
same cluster stay close to each other in the embedding space. In
our context, we observe that 𝒖𝑙 are vector fields that possess affine
deformation structures in parts.

For each sample 𝒑𝑖 and each vector field 𝒖𝑙 = (𝒖𝑙1; · · · ; 𝒖𝑙𝑛), we
fit an affine transformation 𝐴𝑙𝑖 , 𝒃𝑙𝑖 to 𝒖𝑙 𝑗 , 𝑗 ∈ N𝑖 :

𝐴𝑙𝑖 , 𝒃𝑙𝑖 = argmin
𝐴,𝒃

∑︁
𝑗∈N𝑖

∥𝐴𝒑 𝑗 + 𝒃 − 𝒖𝑙 𝑗 ∥2 . (10)

Source 𝑆 Propagate 𝑆1 Project 𝑆1 Target 𝑆 ′

×𝐾

w/o projection with projection
Fig. 10. Correspondences computation of samples from the source shape
through intermediate shapes to the target shape. Corresponding points
share the same colors. We alternate between a propagation step and a
projection step. Without projection, the correspondences do not lie on the
target shape and also drift away.

For any sample 𝒑 𝑗 , the residual 𝜖𝑙𝑖 𝑗 = ∥𝐴𝑙𝑖𝒑 𝑗 + 𝒃𝑙𝑖 − 𝒖𝑙 𝑗 ∥ reveals
whether 𝒑 𝑗 and 𝒑𝑖 belong to the same underlying part or not. When
𝜖𝑙𝑖 𝑗 is small, 𝒑 𝑗 and 𝒑𝑖 are probably in the same part. In contrast,
they are likely in different parts when 𝜖𝑙𝑖 𝑗 is large. In light of this
discussion, we define

𝐷P𝑆 (𝑖, 𝑗) =
( 𝐿∑︁
𝑙=1

𝑤𝑙𝜖
2
𝑙𝑖 𝑗

) 1
2 .

where𝑤𝑙 =
𝜆1 (𝐻𝜃 (𝒛𝑆 ) )
𝜆𝑙 (𝐻𝜃 (𝒛𝑆 ) )

, and 𝜆𝑙 is the eigenvalue that corresponds
to 𝒖𝑙 . In other words, vector fields with small deformation energies
have larger weights. Figure 9 (Left) shows vector fields of an example
shape. Figure 9 (Right) visualizes distances of 𝐷P (𝑖, 𝑗) when fixing
𝑖 while varying 𝑗 . We can see that the resulting distance field is
indeed part-aware.

4.3 Shape Matching

The third stage of GenAnalysis computes inter-shape correspon-
dences between two shapes with latent codes 𝒛𝑆 and 𝒛𝑆 ′ by mapping
samples P𝑆 on 𝑆 := {𝒙 | 𝑔𝜃 (𝒙, 𝒛𝑆 ) = 0} to the surface 𝑆 ′. A naive
approach is to apply Eq. (5) with the latent direction 𝒗 = 𝒛𝑆 − 𝒛𝑆 ′ .
However, since Eq. (5) relies on a linear approximation of the im-
plicit surface constraint, this approach does not result in points
lying exactly on the target implicit surface. To address this, we
use the generator 𝑔𝜃 (·, 𝒛) to obtain 𝐾 = 5 intermediate shapes
𝑆𝑘 := {𝒙 | 𝑔𝜃 (𝒙, 𝒛𝑘 ) = 0}, where 𝒛𝑘 = 𝒛𝑆 + 𝑘

𝐾+1 (𝒛𝑆 ′ − 𝒛𝑆 ). We
propagate P𝑆 to 𝑆 ′ via 𝑆𝑘 , 1 ≤ 𝑘 ≤ 𝐾 . Each propagation step begins
by applying Eq. (5) to compute a displacement vector field for the
current sample positions.
To further mitigate approximation errors at each propagation

step, we introduce a projection step to snap the samples onto the
surface. Rather than projecting each point in isolation, we solve
an optimization problem to ensure consistent projection across all
points. This projection step is similar to minimizing the quadratic
energy in Eq.(3) subject to the linear constraints in Eq.(1). The
differences are 1) the quadratic energy is defined using propagated
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Fig. 11. Color-map of similarity weights 𝑤 (𝒑𝑖 ) between the source shape
(left) and the target shape (right) defined by the local distortions 𝑒𝑖 of
the correspondences computed using our approach. We can see that the
similarity weights characterize the structural similarities.

points, and 2) the linear constraints are defined using the next
intermediate shape to be projected to.

In our implementation, we alternate between one step of propaga-
tion and one step of projection. The output of this procedure gives
for each point 𝒑 ∈ P𝑆 its corresponding point on 𝑆 ′. When 𝑆 and
𝑆 ′ are structurally similar, such correspondences are meaningful.
When 𝑆 and 𝑆 ′ are only partially similar, some of these correspon-
dences are not well defined. We identify such correspondences by
calculating the distortion of the neighborhood of each point. In con-
trast to computing the distortion between 𝑆 and 𝑆 ′ directly, we find
that it is more stable to accumulate the distortion during the propa-
gation procedure. For each point 𝒑𝑖 , consider its neighborhood 𝒑𝑘𝑗
and neighborhood 𝒑𝑘+1

𝑗
at step 𝑘 and step 𝑘 + 1 (after one step of

propagation and projection). We first calculate the underlying affine
transformation 𝐴𝑖𝑘 between them by adopting Eq. (2):

𝐴𝑖𝑘 = argmin
𝐴

∑︁
𝑗∈N𝑖

∥𝐴(𝒑𝑘𝑗 −𝒑
𝑘
𝑖 )−(𝒑

𝑘+1
𝑗 −𝒑𝑘+1𝑖 )∥2+(𝜇𝑟 𝑠2+𝜇𝑐 ∥𝒂∥2) .

We then define the distortion as

𝑒𝑖𝑘 :=
1

|N𝑖 |
∑︁
𝑗∈N𝑖

∥𝐴(𝒑𝑘𝑗 − 𝒑𝑘𝑖 ) − (𝒑𝑘+1𝑗 − 𝒑𝑘+1𝑖 )∥ .

The similarity weight of the 𝑖-th sample point is then given by

𝑤 (𝒑𝑖 ) = exp
(
− 𝑒2𝑖 /2𝜎

2), 𝑒𝑖 =

𝐾∑︁
𝑘=1

𝑒𝑖𝑘 (11)

where 𝜎 is the median of 𝑒𝑖 . Intuitively, a point has high weight
if its neighboring patch has small distortions during the propaga-
tion procedure. Figure 11 illustrates the similarity weights of the
source shapes with respect to the target shapes. We can see that the
distortions reveal structural similarities and differences.

4.4 Consistent Segmentation

The last stage of GenAnalysis performs consistent segmentation
among a collection of test shapes Stest by integrating single-shape
segmentation cues formulated in stage II using correspondences
obtained in stage III. For computational efficiency concern, we com-
pute𝑚 = 60 over-segments for each shape (a widely used strategy

in image/shape segmentation) and perform consistent segmenta-
tion on these over-segments. Figure 12 illustrates the consistent
segmentation procedure.
The over-segments are computed for each shape 𝑆 in isolation.

We feed the distance matrix𝐷P𝑆 into NormalizedCut [Shi and Malik
2000] to obtain the over-segments O𝑆 for 𝑆 . As shown in Figure 13,
the resulting over-segments are better than those derived from
angles between adjacent faces [Golovinskiy and Funkhouser 2008].

Consistent segmentation is achieved by performing spectral clus-
tering on an affinity matrix𝑊 ∈ R( |Stest |𝑚)×( |Stest |𝑚) , an |Stest | ×
|Stest | block matrix. Each diagonal block𝑊𝑖𝑖 encodes the segmenta-
tion cue of 𝑆𝑖 ∈ S:

𝑊𝑖𝑖 (𝑠, 𝑠′) = exp
(
−
𝐷O𝑖 (𝑠, 𝑠′)2

2𝜎2
)
, 1 ≤ 𝑠, 𝑠′ ≤ 𝑚. (12)

where the distance 𝐷O𝑖 (𝑠, 𝑠′) between over-segments 𝑠 and 𝑠′ is
given by the mean value of 𝐷P𝑆𝑖 (𝑖, 𝑗) where 𝑖 ∈ 𝑠 and 𝑗 ∈ 𝑠

′. 𝜎 is
the median of 𝐷O𝑖 (𝑠, 𝑠′) when 𝑠 and 𝑠′ are adjacent over-segments.
The off-diagonal blocks of𝑊 are constructed using a similarity

graph whose edges E connect the nearest neighbors of each testing
shape 𝑆 ∈ Stest. In our implementation, we connect 10 most similar
shapes, in which the similar score between two shapes is defined as
the average of the correspondence weights between them defined
in Eq. (11). We set𝑊𝑖 𝑗 = 0,∀(𝑖, 𝑗) ∉ E. Each non-empty off diagonal
block𝑊𝑖 𝑗 , (𝑖, 𝑗) ∈ E encodes the correspondences between over-
segments of 𝑆𝑖 and over-segments of 𝑆 𝑗 . Given two over-segments
𝑠𝑖 ∈ O𝑖 and 𝑠 𝑗 ∈ O𝑗 , we define their affinity score as

𝑊𝑖 𝑗 (𝑠𝑖 , 𝑠 𝑗 ) = 𝜆
|𝑜 (𝑠𝑖 , 𝑠 𝑗 ) |

max( |𝑠𝑖 |, |𝑠 𝑗 |)
· mean
(𝒑𝑖 ,𝒑 𝑗 ) ∈𝑜 (𝑠𝑖 ,𝑠 𝑗 )

(𝑤 (𝒑𝑖 ) +𝑤 (𝒑 𝑗 ))
2

(13)
where 𝑜 (𝑠𝑖 , 𝑠 𝑗 ) collects point pairs from 𝑠𝑖 and 𝑠 𝑗 that are in corre-
spondences; the second term in (13) calculates the mean of similarity
scores of the correspondences in 𝑜 (𝑠𝑖 , 𝑠 𝑗 ); 𝜆 is a hyper-parameter
that balances single shape segmentation cues and consistency in
segmentations. As the quality of our inter-shape correspondences
is high, we set 𝜆 = 2 in our experiments.
Given𝑊 , we employ a variant of spectral graph cut to compute

clusters of over-segments across all input shapes, which lead to con-
sistent segmentation. Please refer to Appendix B for details of this
spectral clustering procedure. Appendix C presents our consistent
segmentation algorithm in algorithm block.

5 EXPERIMENTAL RESULTS

We demonstrate the effectiveness of GenAnalysis and provide both
quantitative and qualitative results. We begin with the experimental
setup in Section 5.1. We then evaluate the shape matching and shape
segmentation results of GenAnalysis in Section 5.2 and Section 5.3,
respectively. Section 5.4 presents an ablation study.

5.1 Experimental Setup

5.1.1 Dataset. We train and evaluate GenAnalysis and baselines
on ShapeNet [Chang et al. 2015]. We follow the training and testing
split of ShapeNetPart [Yi et al. 2016]. To evaluate shape matching,
we conduct various surrogate tasks including part label transfer
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(a) (b) (c) (d)

𝐷P𝑆
over segement

𝐷P𝑆 (𝑖, ∗) 𝐷O𝑖 (𝑖, ∗)

aggregate aggregate

over segement
consistent segementation

𝐷P𝑆 (𝑖, ∗)

𝑊𝑖𝑖 𝑊𝑖 𝑗
𝑜 (𝑠𝑖 , 𝑠 𝑗 )

𝑊00 𝑊01

𝑊10 𝑊11

graph cut
graph cut

Fig. 12. Overview of our consistent-segmentation algorithm. (a) We compute over-segments for each shape 𝑆𝑖 using its distance matrix 𝐷P𝑆𝑖 . We
aggregate (b) affine fitting distance function in each shape and (c) correspondence between each shape pair by over segments.(d) We perform spectral
clustering among over-segments of all shapes. Spectral clustering employs an block-wise affinity matrix that encodes each single-shape segmentation cues in
its diagonal blocks and correspondences between structurally similar shapes in its off-diagonal blocks.

Fig. 13. Comparison between over-segments derived from different
strategies. (Top) Over-segments derived from angles between adjacent
faces [Golovinskiy and Funkhouser 2008]. (Bottom) Over-segments using
our approach, which offer more meaningful segment boundaries.

and keypoint transfer due to the lack of labeled datasets providing
ground truth dense correspondence for direct evaluation. We use
labels from ShapeNetPart [Yi et al. 2016] and KeypointNet [You
et al. 2020] for the part label transfer and key point transfer tasks,
respectively. We evaluate shape matching on three popular cate-
gories, i.e., chair, table, and airplane. For shape co-segmentation,
we also use labels from ShapeNetPart [Yi et al. 2016] for evaluation.
We report the performance throughout the entire dataset that has
15 categories. The ablation study is performed in the categories of
Chair, Table, and Airplane, as do most baseline approaches.

5.1.2 Baseline approaches. For shape matching, we compare our re-
sult with the template learning methods, including DIT [Zheng et al.
2021], DIF [Deng et al. 2021] and Semantic DIF [Kim et al. 2023] since
they achieve the state-of-the-art performance in finding dense cor-
respondences on ShapeNet. We also include AtlasNetV2 [Deprelle
et al. 2019] and SIF [Genova et al. 2019b] as additional baselines.

We compare our shape co-segmentation results with BAE-Net [Chen
et al. 2019], RIM-Net [Niu et al. 2022a] and DAE-Net [Chen et al.
2024], which perform unsupervised shape co-segmentation using
branched auto-encoding implicit network. There are some other
methods on structure learning that could also perform unsupervised
shape co-segmentation. However, they split each input shape into
an excessive set of small parts [Chen et al. 2020; Deng et al. 2020],
so they are not compared in our evaluation.

mIOU Chair Table Airplane
AtlasNetV2 [Deprelle et al. 2019] 67.1 59.6 56.8

SIF [Genova et al. 2019b] 61.5 62.7 54.3
DIT [Zheng et al. 2021] 79.6 68.7 64.4
DIF [Deng et al. 2021] 80.4 68.6 71.9

SemanticDIF [Kim et al. 2023] 80.6 69.5 71.8
Ours-NR 80.3 70.0 70.7
Ours 82.6 73.0 73.3

Table 1. Label transfer results on three categories of ShapeNetPart.
We report mean IOU. Higher is better. Ours-NR means GenAnalysis without
AAAP regularization.

5.1.3 Implementation Detail. We train our model on a machine
with 8 Nvidia Quadro RTX 6000 GPU, and Intel(R) Gold 6230 CPU
(40-Core) CPU. We use adam optimizer [Kingma and Ba 2015] and
train our model for 4000 epoch using base learning rate of 1e-4. The
training takes approximately 3 days to complete. We use the same 8
-layer MLP network as SALD[Atzmon and Lipman 2021] and set 𝜆𝑑
to 1e-4 and 𝜆𝐾𝐿 to 1e-5 respectively. Test-time optimization takes
30 minutes on 700 test shapes. Stage II, stage III, and stage IV of
GenAnalysis take 1 hour, 4 hours, and 10 minutes, respectively.

5.2 Analysis of Shape Matching

5.2.1 Part label transfer. We transfer the part segment labels from
the source shape to the target shape using our correspondence re-
sults. Specifically, for each of the three categories, we select five
labeled shapes as the source shape, transfer their labels to target
shapes and compare with ground truth part labels to record the
best results. This task can be viewed as 5-shot 3D shape segmenta-
tion using 5 samples as training data. Table 1 presents quantitative
results on the 5-shot part label transfer task, measured by aver-
age per-part IOU. Our method achieves the best performance in all
three categories compared to all the baseline methods. Figure 15
illustrates the qualitative results of part label transfer. AtlasNetV2
and SIF often generate inconsistent correspondences among small
regions such as the engine region of airplane and arm region of
chair due to the limitation of their shape representations. Template-
based learning methods [Deng et al. 2021; Kim et al. 2023; Zheng
et al. 2021] suffer from finding accurate correspondences among
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BAE-Net

RIM-Net

DAE-Net

Ours

GT

Chair Airplane Table Knife Cap Lamp Guitar

Fig. 14. Qualitative evaluation of shape co-segmentation quality on ShapeNet.We compare co-segmentation results with BAE-Net[Chen et al. 2019],
RIM-Net[Niu et al. 2022a] and DAE-Net[Chen et al. 2024]. The colored parts visualize segmentation consistency across different shapes in the same category

Source DIF DIT S-DIF Ours GT

Fig. 15. Label transfer results on ShapeNet. We transfer ShapeNet-
Part [Yi et al. 2016] labels from source shapes to target shapes and compare
our result with DIF [Deng et al. 2021], DIT [Zheng et al. 2021] and Semantic
DIF [Kim et al. 2023].

structurally distinct and less common shapes due to the limited flex-
ibility of the shared template to represent those shapes. In contrast,
GenAnalysis performs much better on those less common shapes
with large geometric variations, such as a high-base chair or table.
More qualitative visualization results can be found in Figure 24 in
the supp. material.

5.2.2 Keypoint transfer. Table 2 presents the quantitative result in
the keypoint transfer task. We transfer keypoints from the source
shape to the target shape using our correspondence results and mea-
sure performance by the percentage of correct keypoints (PCK) [Yi
et al. 2017]. We compute the geodesic distance between the trans-
ferred keypoints and the ground truth points and report the PCK
score under a distance threshold of 0.01/0.02. Table 2 shows that our

PCK Chair Table Airplane
AtlasNetV2 [Deprelle et al. 2019] 16.6/37.1 24.5/45.3 25.7/42.4

SIF [Genova et al. 2019b] 20.1/40.7 28.6/47.2 28.1/46.7
DIT [Zheng et al. 2021] 24.6/45.3 38.9/54.2 31.7/52.0
DIF [Deng et al. 2021] 32.9/52.5 40.5/61.4 36.9/54.7

SemanticDIF [Kim et al. 2023] 25.9/44.5 26.9/47.9 20.0/31.1
Ours-NR 28.9/49.7 37.3/57.2 35.7/61.4
Ours 34.9/58.6 43.1/64.2 40.5/67.8

Table 2. Keypoint transfer results on three categories of ShapeNetPart.
We report the PCK scores with thresholds of 0.01 and 0.02. Higher is better.
Ours-NR means GenAnalysis without AAAP regularization.

Source DIF DIT S-DIF Ours GT

Fig. 16. Keypoint transfer results on ShapeNet.We transfer keypoint
labels from source shapes to target shapes and compare our result with
DIF [Deng et al. 2021], DIT [Zheng et al. 2021] and Semantic DIF [Kim et al.
2023].

method outperforms baseline approaches. Note that the relevant
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improvements in keypoint transfer are higher than those in segmen-
tation transfer. This can be understood as the fact that GenAnalysis
optimizes point-wise correspondences, while segmentation transfer
accuracy does not measure the quality of the correspondences in
each segment. Figure 16 shows the qualitative keypoint transfer
results. Our method shows better results in finding the correspon-
dences between structurally distinct shapes, while template-based
learning methods [Deng et al. 2021; Kim et al. 2023; Zheng et al.
2021] fail to find a consistent scale to fit the template and produce
inaccurate correspondence results. More qualitative visualization
results can also be found in Figure 25 in the supp. material.

5.2.3 Texture transfer. We can also transfer mesh attributes such
as texture from the source shape to the target shape using the dense
correspondence generated by GenAnalysis. Figure 17 shows texture
transfer result between shapes in ShapeNet. Our method preserves
complex patterns in texture and transfers them to semantically
consistent regions.

Source Target

Fig. 17. Texture transfer result on ShapeNet. We transfer texture from
source shapes to target shapes with different structure on ShapeNet objects
using coorrespondences generated by GenAnalysis.

5.3 Analysis of Shape Segmentation

We then evaluate the performance of consistent shape segmentation.
The same as DAE-Net [Chen et al. 2024], we quantitatively evaluate
the consistent segmentation results by mean IOU in 15 categories
of ShapeNetPart.
Table 3 shows that GenAnalysis achieves the highest accuracy

in almost all categories except Bag, in which RIM-Net outperforms
GenAnalysis by 0.1%. In particular, GenAnalysis achieves salient
improvements in Chair, Table, Guitar, Knife, Lamp, Laptop, Rocket,
and Skateboard, in which part variations exhibit strong piece-wise
affine structures. In Laptop, which exhibits perfect piece-wise affine
part variations, GenAnalysis reduces the gap to the ground-truth
from DAE-Net by 40% (from 95.0% to 97.1%). For other categories
includingAirplane, Bag, Cap, Earphone,Motorcycle, Mug, and Pistol,
in which part variations are more complex, the improvements of
GenAnalysis are still noticeable. These results show the robustness
of GenAnalysis in different cases.

We also present qualitative consistent segmentation results in Fig-
ure 14. Many baseline methods, especially BAE-Net fail to produce

fine-grained segmentations, e.g., four legs of a chair and two back
wings of an airplane. These are not reflected in the mean IOU num-
bers, as these individual segments are grouped into one category
in the ground-truth labels. We also notice that RIM-Net struggles
to segment shapes with rare and distinct structures, such as the
three-leg table, due to the limited flexibility of the binary tree net-
work. DAE-Net presents inconsistent segmentation results between
structurally less similar shapes. In contrast, GenAnalysis produces
more consistent and fine-grained segmentation than other baseline
methods. Furthermore, our method shows much better reconstruc-
tion quality compared to all the baseline methods. In this way, we
do not need to perform additional post-processing steps used by
other baselines such as projecting labels to ground truth shapes for
evaluation. This is because instead of finding a consistent partition
of the shape in the template using a bottleneck network, as other
baseline methods do, we analyze the piecewise affine variation of
the shape to produce consistent segmentation, which does not hurt
network reconstruction ability. We show that the piecewise affine
transformation assumption fits part variation among a wide range of
shape category, which supports the powerful generalization ability
of our method to more complex shape collections.

5.4 Ablation Study

This section presents an ablation study of GenAnalysis. Table 4
presents quantitative results.

5.4.1 Without regularization. As show in Table 2 and Table 1, the
correspondence quality of GenAnalysis in terms of mIOU in the
part label transfer task and PCK scores in the keypoint transfer task
decreases without the AAAP reguarization loss. This is expected
because, without the AAAP regularization, the interpolations from
the generator do not recover the underlying deformations between
shape pairs. The resulting correspondences easily drift away.
In terms of consistent segmentation, Table 3 shows that perfor-

mance drops in mIOU values are much more significant when the
AAAP regularization term is withdrawn, that is, by 30.3%, 33.4%
and 26.7% on the Chair, Table, and Airplane. In addition to having
low-quality shape correspondences in this setting, another impor-
tant factor is that the shape variation segmentation cues become
ineffective in this setting.

5.4.2 Without structural variation cue. Next, we drop the struc-
tural variation cue on each input shape and use the edge angle
formulation in [Golovinskiy and Funkhouser 2008] to generate the
over-segments and single shape segmentation cues. In this case,
the mIOU values on the Chair, Table, and Airplane drop by 16.1%,
13.4%, and 16.7%, respectively. On the one hand, this shows the ef-
fectiveness of the shape variation segmentation cues. However, the
decrements are not glaring. This can be understood as the power of
consistent shape segmentation using inter-shape correspondences.

5.4.3 Without test-time optimization. Without the test-time opti-
mization step, the mIOU values drop by a few percentage points. We
find that the main issue comes from the fact that the learned shape
generator does not offer effective reconstructions of test shapes,
although the segmentations on the reconstructed shapes are still
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mIOU Chair Table Plane Bag Cap Earph. Guitar Knife Lamp Laptop Motor. Mug Pistol Rocket Skateb. Mean
BAE-Net 56.1 58.4 74.3 84.4 84.9 44.1 51.0 32.5 74.7 27.1 27.5 94.4 29.0 40.9 63.3 56.2
RIM-Net 80.2 54.9 76.0 86.1 62.6 72.9 25.7 29.5 68.7 33.2 28.5 48.6 36.2 39.5 64.9 53.6
DAE-Net 85.5 75.5 78.0 84.4 86.3 77.2 88.4 85.8 73.2 95.0 48.1 94.2 74.6 38.7 68.2 76.9

GenAnalysis 88.4 82.6 79.1 86.0 87.3 78.4 92.2 89.8 77.6 97.1 49.6 95.3 74.9 52.7 70.4 80.1
Table 3. Shape co-segmentation result on ShapeNetPart.We report the mean IOU. Higer is better. Baseline approaches include BAE-Net [Chen et al.
2019],RIM-Net [Niu et al. 2022a], and DAE-Net [Chen et al. 2024].

mIOU Chair Table Airplane
GenAnalysis-No-AAAPReg 58.1 49.2 52.4
GenAnalysis-No-TanAnal. 72.3 69.2 62.4
GenAnalysis-No-TestTime. 85.7 79.2 74.3
GenAnalysis-No-Weighting. 87.6 81.5 77.6

GenAnalysis 88.4 82.6 79.1
Table 4. Shape co-segmentation result on ShapeNetPart.We report the
mean IOU. Higer is better. GenAnalysis-AAAPReg means GenAnalysis with-
out AAAP regularization. GenAnalysis-No-TanAnal means no segmentation
cues from tangent space analysis. GenAnalysis-No-Testime stands for drop-
ping test-time optimization. GenAnalysis-No-Weighting means dropping
the latent code weighting term in test time optimization.

40 50 60 70 80
#Oversegments

75

80

85

90

m
IO

U

Chair
Table
Airplane

Fig. 18. Mean IOU values when varying the number of over segments. We
show three categories, i.e., Chair, Table, and Airplane.

good. In this case, performance drops mainly come from projecting
the segmentations back to the test shapes.

5.4.4 Without latent code weighting. The weighting scheme in test-
time optimization improves the mIOU values by 0.8% to 1.5% in
these three categories. These improvements are consistent, showing
its effectiveness.

5.4.5 Varying the number of over-segments𝑚. We proceed to an-
alyze the effects when varying the number of over-segments 𝑚
per shape. Figure 18 shows the mIOU values of Chair, Table, and
Airplane, when varying the number of over-segments𝑚. We can
see that the values peak around𝑚 = 60 and drop slightly when𝑚
becomes too small or too large. We can understand this behavior
as follows. When𝑚 is small, the best shape segmentation offered
by the over-segments is of low quality. However, the consistent
shape segmentation problem, which employs spectral relaxation, is
easier to solve, leading to a good approximate solution. In contrast,

Ours

GT

Fig. 19. Unsuccessful co-segmentation results.

when𝑚 is large, the best shape segmentation offered by the over-
segments is of high quality. Yet, it is difficult to obtain the optimal
solution, because of the approximation nature of spectral clustering.
Nevertheless, the variations in mIOU are not significantly, showing
the robustness of GenAnalysis.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this paper, we have introduced GenAnalysis, a novel framework
for performing joint shape analysis by learning implicit shape gen-
erators. The key idea is to enforce an as-affine-as-possible (AAAP)
deformation prior among neighboring synthetic shapes by estab-
lishing correspondences between them. This allows us to establish
inter-shape correspondences, to extract structurally similar shapes,
and to understand shape variations. We show how to extract single-
shape segmentations by recovering piece-wise affine structures
from the vector fields in the tangent space of each shape. We also
show how to perform consistent shape segmentation by integrat-
ing segmentation cues from single-shapes using consistent shape
correspondences derived from the shape generator. For both shape
matching and shape segmentation, GenAnalysis has achieved state-
of-the-art results on ShapeNetPart.

The design of GenAnalysis allows efficient test-time optimization
that achieves noticeable performance gains. This strength comes
from learning an implicit generative model, which can be fine-tuned
to fit any test shapes. In contrast, template-based models employed
by existing approaches do not possess this property. On the other
hand, test-time optimization comes with the cost of optimizing
networkweights and is computationallymore expensive than simply
applying learned neural networks during test time.
Since our method relies on spectral clustering to perform con-

sistent segmentation, for some isolated shapes where shape corre-
spondence quality is poor, our method could perform poorly. See
the chair example in Figure 19 where the arm of the chair is not
distinguished from the back of the chair and the table example. In
addition, due to the nature of spectral clustering, we occasionally
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observe over-segmentations and under-segmentations, as shown in
Airplane and Table in Figure 19.

GenAnalysis opens the door to use shape generators to under-
stand shape variations and establish inter-shape correspondences.
There are ample opportunities for future research. On the analysis
side, we would like to detect clusters of structurally similar shapes
and jointly learn a shape generator of each cluster. This can be
achieved by decoupling the latent space into a geometry latent code
and a structure latent code. The structure latent code can model
structural variations, avoiding explicit clustering. Another direction
is to explore shape generation. We propose to introduce another
latent code to model shape details and enforce AAAP when varying
geometry and structure latent codes.
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A EXPRESSION OF THE QUADRATIC ENERGY

We can express 𝑒
(
𝒈𝜃 (𝒛), 𝒅𝒗 (𝒛)

)
:=min

𝒚

(
𝒅𝒗 (𝒛)
𝒚

)𝑇 (
𝐾 𝐸𝜃 (𝒛)

𝐸𝜃 (𝒛)𝑇 𝐺𝜃 (𝒛)

) (
𝒅𝒗 (𝒛)
𝒚

)
. (14)

Here 𝐾 = diag({|N𝑖 |}) ⊗ 𝐼3; 𝐸𝜃 (𝒛) and 𝐺𝜃 (𝒛) are 𝑛 × 𝑛 sparse
and diagonal block matrices, whose expressions are deferred to
Appendix A.1.

As discussed in Appendix A.2, (14) is a quadratic form:

𝑒
(
𝒈𝜃 (𝒛), 𝒅𝒗 (𝒛)

)
= 𝒅𝒗 (𝒛)𝑇 𝐿𝜃 (𝒛)𝒅𝒗 (𝒛) . (15)

where

𝐿
𝜃 (𝒛) := 𝐾 − 𝐸𝜃 (𝒛)𝐺𝜃 (𝒛)−1𝐸𝜃 (𝒛)𝑇 . (16)

Moreover, the optimal transformations are given by

𝒚★ = −𝐺𝜃 (𝒛)−1𝐸𝜃 (𝒛)𝑇 𝒅𝒗 (𝒛). (17)

A.1 Expressions of Matrices in (14)

We can parameterize the elements of 𝐴𝑖 as follows:

vec(𝐴𝑖 ) = 𝐽 · ©­«
𝑠𝑖
𝒄𝑖
𝒂𝑖

ª®¬ = 𝐽𝒚𝑖

where

𝐽 :=

©­­­­­­­­­­­­­­­«

1 0 0 0 1√
2

− 1√
6

0 0 0
0 0 0 1 0 0 1 0 0
0 0 −1 0 0 0 0 1 0
0 0 0 −1 0 0 1 0 0
1 0 0 0 0 2√

6
0 0 0

0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0
0 −1 0 0 0 0 0 0 1
1 0 0 0 − 1√

6
− 1√

6
0 0 0

ª®®®®®®®®®®®®®®®¬

.

Let

𝑅 =
©­«
𝜇𝑟 0 0
0 0 0
0 0 𝜇𝑠 𝐼5

ª®¬ .
It follows that

𝑒
(
𝒈𝜃 (𝒛), 𝒅𝒗 (𝒛)

)
=

𝑛∑︁
𝑖=1

( ∑︁
𝑗∈N𝑖

∥((𝒑𝜃𝑖 (𝒛) − 𝒑𝜃𝑗 (𝒛))⊗)
𝑇 𝐽𝒚𝑖

− (𝒅𝒗𝑖 (𝒛) − 𝒅𝒗𝑗 (𝒛))∥
2 +𝒚𝑇𝑖 𝑅𝒚𝑖

)
It follows that 𝐾 is the Laplacian matrix of the graph whose edges
are {(𝑖, 𝑗) | 𝑗 ∈ N𝑖 , 1 ≤ 𝑖 ≤ 𝑛}; the diagonal blocks of 𝐺𝜃 are

𝐺𝜃𝑖𝑖 (𝒛) = 𝐽
𝑇 (

∑︁
𝑗∈N𝑖

(
𝒑𝜃𝑖 (𝒛) − 𝒑𝜃𝑗 (𝒛)

) (
𝒑𝜃𝑖 (𝒛) − 𝒑𝜃𝑗 (𝒛)

)𝑇 ⊗ 𝐼3) 𝐽 + 𝑅;

The 𝑖 𝑗-th block of 𝐸𝜃 (𝒛) are given by

𝐸𝜃𝑖 𝑗 (𝒛) =


− ∑
𝑗 ′∈N𝑖

(𝒑𝜃
𝑖
(𝒛) − 𝒑𝜃

𝑗 ′ (𝒛))
𝑇 ⊗ 𝐼3 𝑗 = 𝑖

(𝒑𝜃
𝑖
(𝒛) − 𝒑𝜃

𝑗
(𝒛))𝑇 ⊗ 𝐼3 𝑗 ∈ N𝑖 \ {𝑖}

0 otherwise

A.2 Quadratic Norm Expression of Eq.(2)

Given 𝒅𝒗 (𝒛), the optimal solution to

min
𝒚

(𝒅𝒗 (𝒛)𝑇 ,𝒚𝑇 )
(

𝐾 𝐸𝜃 (𝒛)
𝐸𝜃 (𝒛)𝑇 𝐺𝜃 (𝒛)

)
(𝒅𝒗 (𝒛);𝒚)

is given by

𝒚 = −𝐺𝜃 (𝒛)−1𝐸𝜃 (𝒛)𝑇 .
Therefore,

𝐿𝜃 (𝒛) = 𝐾 − 𝐸𝜃 (𝒛)−1𝐸𝜃 (𝒛)𝑇 (18)

A.3 Correspondence Computation

We solve the following quadratic minimization problem with linear
constraint to find 𝒅𝒗 (𝒛):

𝒅𝒗 (𝒛) := lim
𝜇→0

argmin
𝒅

𝒅𝑇 𝐿𝜃 (𝒛)𝒅 + 𝜇∥𝒅∥2

𝑠 .𝑡 . 𝐶𝜃 (𝒛)𝒅 = −𝐹𝜃 (𝒛)𝒗 (19)

where 𝐶𝜃 (𝒛)𝒅 = −𝐹𝜃 (𝒛)𝒗 is the matrix representation of Eq.(1).
𝜇∥𝒅∥2 avoids degenerate solutions.
It is easy to check the optimal solution to (19) is given by

𝒅𝒗 (𝒛) = 𝑀𝜃 (𝒛)𝒗 . (20)

𝑀𝜃 (𝒛) = −(𝐼3𝑛, 0)
(
𝐿𝜃 (𝒛) 𝐶𝜃 (𝒛)𝑇

𝐶𝜃 (𝒛) 0

)†
𝐹𝜃 (𝒛) (21)

where 𝐴† denotes the pseudo inverse of 𝐴. Eq.(21) only needs the
pseudo-inverse of a sparsematrix, which can be computed efficiently
by LU pre-factorization.

B SPECTRAL CONSISTENT SEGMENTATION

This section presents details of the spectral consistent segmentation
procedure used in GenAnalysis. The procedure takes a generalized
adjacency matrix 𝐴 ∈ R𝑛𝑚×𝑛𝑚 as input and outputs 𝐾 partitions
{1, · · · , 𝑛𝑚} = I1 · · · I𝑀 . The optimal value for 𝑀 is determined
later.

Denote 𝒅 = 𝐴1 and 𝐷 = diag𝒅. We first consider the normalized
adjacency matrix

𝐿 = 𝐼𝑛𝑚 − 𝐷− 1
2𝐴𝐷− 1

2 .

With 𝒖𝑙 and 𝜆𝑙 as the 𝑙-th leading eigenvector and eigenvalue of 𝐿,
where 1 ≤ 𝑙 ≤ 𝐿. In our experiments, we choose 𝐿 = 10.

We form an embedding space

𝑈 = (𝒖2, · · · ,

√︄
𝜆2

𝜆𝐿

𝒖𝐿) ∈ R𝑛𝑚×(𝐿−1) .

where each row of 𝑈 provides the coordinate of the correspond-
ing over-segment. We then perform probabilistic K-means with an
isotropic covariance matrix to compute the resulting clusters. The
initial centers are determined by farthest point sampling (FPS).

We determined the optimal value 𝐾 with the maximum value in
𝑟𝐾−1
𝑟𝐾

where 𝑟𝐾 is the maximum distance between each point of the
cluster center in FPS with 𝐾 clusters.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: February 2025.
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ALGORITHM 1: Consistent Segmentation in GenAnalysis
Input :A collection of test shapes Stest = {𝑆𝑖 }, each with a

distance matrix 𝐷𝑃𝑆𝑖 .
Number of over-segments𝑚
Similarity graph E connecting each test shape to its 𝑘 most

similar shapes (e.g., 𝑘 = 10).
Hyper-parameter 𝜆 (e.g., 𝜆 = 2).
Median 𝜎 for distance normalization.

Output :Consistent segmentation of the test shapes Stest.

Step 1: Over-segmentation
foreach test shape 𝑆𝑖 ∈ Stest do

Apply NormalizedCut [Shi and Malik 2000] to 𝐷𝑃𝑆𝑖 to obtain𝑚
over-segments𝑂𝑆𝑖 .

𝑂𝑆𝑖 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐶𝑢𝑡 (𝐷𝑃𝑆𝑖 ) .
end

Step 2: Construct the Block Affinity Matrix A
Initialize a block matrix

W ∈ R( |Stest | ·𝑚)×(|Stest | ·𝑚) .

(a) Diagonal Blocks:
foreach shape 𝑆𝑖 ∈ Stest do

foreach over-segments 𝑠, 𝑠′ ∈ 𝑂𝑆𝑖 do
Compute

W𝑖 (𝑠, 𝑠′ ) = exp
(
−𝐷𝑂𝑖 (𝑠,𝑠

′ )2

2𝜎2

)
,

where
𝐷𝑂𝑖 (𝑠, 𝑠

′ ) =
1

|𝑠 | · |𝑠′ |
∑︁
𝑖∈𝑠

∑︁
𝑗 ∈𝑠′

𝐷𝑃𝑆𝑖 (𝑖, 𝑗 ) .

end
end

(b) Off-Diagonal Blocks:
foreach (𝑖, 𝑗 ) ∈ E with 𝑆𝑖 , 𝑆 𝑗 ∈ Stest do

foreach over-segments 𝑠𝑖 ∈ 𝑂𝑆𝑖 , 𝑠 𝑗 ∈ 𝑂𝑆 𝑗 do
Let 𝑜 (𝑠𝑖 , 𝑠 𝑗 ) be the set of corresponding point pairs. Then

W𝑖,𝑗 (𝑠𝑖 , 𝑠 𝑗 ) = 𝜆
| 𝑜 (𝑠𝑖 , 𝑠 𝑗 ) |

max( |𝑠𝑖 |, |𝑠 𝑗 | )
· mean

(
𝑤 (p𝑖 )+𝑤 (p𝑗 )

2

)
(p𝑖 ,p𝑗 ) ∈ 𝑜 (𝑠𝑖 ,𝑠 𝑗 )

,

where 𝑤 (p) is the correspondence weight for point p.
end

end
SetW𝑖,𝑗 = 0 for all (𝑖, 𝑗 ) ∉ E .
Step 3: Spectral Clustering
Perform spectral graph cut on A to cluster the over-segments across
all shapes in Stest. The resulting clusters yield consistent segment
labels for each shape.

return Consistent segmentation of all shapes in Stest.

C CONSISTENT SEGMENTATION ALGORITHM DETAIL

We summarize the algorithm presented in section 4.4 in algorithm
block.

D MORE QUALITATIVE RESULTS

We show additional consistent segmentation results on ShapeNet
in Figure 20, 21, 22, 23 respectively. We show more results on part
label transfer and key point transfer in Figure 24 and 25.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: February 2025.
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Ours

GT

Fig. 20. More qualitative results of shape co-segmentation on chair category in ShapeNet.

Ours

GT

Fig. 21. More qualitative results of shape co-segmentation on table category in ShapeNet.

Ours

GT

Fig. 22. More qualitative results of shape co-segmentation on airplane category in ShapeNet.
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Ours

GT

Ours

GT

Ours

GT

Fig. 23. More qualitative results of shape co-segmentation on other category in ShapeNet.
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Source DIF DIT S-DIF Ours GT

Fig. 24. Additional comparison on label transfer in ShapeNet.
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Source DIF DIT S-DIF Ours GT

Fig. 25. Additional comparison on keypoint transfer in ShapeNet.
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