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Abstract

We introduce the first method for generating Vector Dis-001
placement Maps (VDMs): parameterized, detailed geomet-002
ric stamps commonly used in 3D modeling. Given a single003
input image, our method first generates multi-view normal004
maps and then reconstructs a VDM from the normals via005
a novel reconstruction pipeline. We also propose an effi-006
cient algorithm for extracting VDMs from 3D objects, and007
present the first academic VDM dataset. Compared to exist-008
ing 3D generative models focusing on complete shapes, we009
focus on generating parts that can be seamlessly attached010
to shape surfaces. The method gives artists rich control011
over adding geometric details to a 3D shape. Experiments012
demonstrate that our approach outperforms existing base-013
lines. Generating VDMs offers additional benefits, such as014
using 2D image editing to customize and refine 3D details.015

1. Introduction016

Generative neural models for 3D shape synthesis is a017
rapidly advancing research area [58]. However, they are018
still not widely adopted in artistic workflows for two main019
reasons. First, synthesizing fine geometric details is chal-020
lenging due to the heterogeneity of 3D representations and021
the lack of detailed 3D training data. Second, existing neu-022
ral tools lack the precise spatial and compositional controls023
needed by 3D artists. To address these limitations, instead024
of reinventing the 3D modeling stack to accommodate gen-025
erative AI, we draw inspiration from an existing workflow026
in which an artist starts with a base mesh and “stamps” the027
desired details onto the 3D surface (see Figure 1). These028
smaller stamps are easier to generate than full-scale 3D029
models, fit seamlessly into existing workflows, eliminate030
artists’ dependence on expensive and limited third-party031
stamp libraries, and provide full artistic control over spatial032
arrangement and composition.033

We chose the vector displacement map or VDM as our034
stamp representation. A VDM assigns an arbitrary 3D dis-035
placement to every point in a 2D rectangle, warping the036

Base mesh

Figure 1. We introduce GenVDM, a method that can generate
a highly detailed Vector Displacement Map (VDM) from a single
input image. The generated VDMs can be directly applied to mesh
surfaces to create intricate geometric details. Note that the thumb-
nails represent plain 2D RGB image sources.

sheet to form a curved surface with complex geometric fea- 037
tures, such as overhangs and cavities. It is widely supported 038
in 3D software [1–4] and compactly stored as a vector field 039
over a UV image domain. While using VDMs is common- 040
place, authoring them is extremely challenging, and artists 041
usually depend on packs of VDMs created by third parties 042
(analogous to brushes in digital painting tools), with lim- 043
ited customization or generality. Image or text-driven stamp 044
generation could drastically expand the scope of VDM us- 045
age by providing artists with custom stamps on demand. 046

In this paper, we propose the first neural pipeline to gen- 047
erate a VDM from a single RGB image. To achieve this, 048
we address two main technical challenges. The first chal- 049
lenge is that existing generative models are not suitable for 050
VDM generation: generating a 3D object usually does not 051
also produce a parametric 2D domain for stamp applica- 052
tion, and predicting a depth map from a single image does 053
not capture complex high-amplitude variations, overhangs, 054
and occlusions; see Figure 6. Thus, we develop a three-step 055
method. First, given an input RGB image (which can also 056
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be generated with existing text-to-image models), we pre-057
dict normal maps from multiple viewing directions to re-058
solve occlusions that may be hidden in a single view. Sec-059
ond, we reconstruct a mesh (which need not have disk topol-060
ogy) by fitting a neural SDF to the multi-view normal maps061
and polygonizing the result. Third, we use a neural defor-062
mation model to displace points on a 2D rectangle to fit the063
mesh, forming the final VDM.064

The second challenge in training a generative VDM065
model is the absence of training data. We tackle it by build-066
ing an interactive tool to segment interesting semantic and067
geometric regions from Objaverse 3D models [19], and then068
develop a geometry processing pipeline for converting these069
regions into a VDM representation, creating a dataset of070
1,200 VDM patches used for training. Our pipeline is ro-071
bust enough to analyze polygon soups in the wild, which072
we achieve by re-sampling the selected regions and recon-073
structing a single connected surface after removing outliers.074
We then deform the resulting mesh to obtain a co-planar075
boundary that can be seamlessly attached to a flat base tile076
over which the VDMs are typically defined. The processed077
shapes can then be rendered and used to finetune the multi-078
view normal generation model.079

We compare our method to state-of-the-art shape gener-080
ation techniques [27, 40, 51], as well as to reconstructing081
a heightfield (i.e. a scalar displacement map) from esti-082
mated depth [81]. We use a collection of images depicting083
parts commonly used in VDMs (e.g., facial elements, deco-084
rations), and evaluate using visual fidelity [54] and seman-085
tic similarity [52] metrics. Our method outperforms others086
due to its ability to handle smaller VDM-like regions. Note087
also that other mesh generation methods do not produce a088
displacement map – which can have both “outward” and089
“inward” displacements – and thus their output can only be090
additively combined with the base shape, e.g., they are not091
able to introduce cavities like an eye or a mouth in Figure 1.092

To summarize, our contributions are:093

• The first generative ML pipeline for VDMs;094
• A robust method to reconstruct VDMs from multi-view095

normal maps produced by image diffusion models;096
• A novel VDM extraction pipeline to efficiently extract097

and process patches from 3D objects to produce VDMs;098
• The first public dataset of VDMs for academic research.099

2. Related work100

Vector Displacement Maps. Texture mapping [10, 26] is101
the dominant solution in the industry to add complex sur-102
face details to shapes without increasing mesh complexity.103
Accompanying it are many techniques that hallucinate com-104
plex geometric details, such as bump mapping [9], horizon105
mapping [43], and parallax mapping [30]. Unlike those106
techniques that do not change the geometry of the shape,107

displacement mapping [17, 18, 61] adds geometric details 108
by subdividing the original geometry into finer polygons 109
and then displacing each vertex in its normal direction by a 110
height value indexed from the displacement map (although 111
some versions of displacement mapping can be done in the 112
pixel space without changing the original geometry [66]). 113

While a displacement map can be considered as a single- 114
channel image or heightfield, a vector displacement map 115
(VDM) can be seen as a three-channel image, where each 116
pixel contains a 3D displacement vector. VDMs naturally 117
support representing more complex geometries with less 118
distortion compared to displacement maps, and both are 119
used in 3D modeling tools to create geometric details. Re- 120
search on displacement maps and VDMs has focused on 121
texture synthesis from examples [82], and synthesis of hu- 122
man body and face meshes for shape reconstruction [6, 80]. 123
VDMs conceptually resemble Geometry Images [23], and 124
some recent works adopt image diffusion models for gener- 125
ating Geometry Images to synthesize 3D shapes [20, 79]. 126
To our knowledge, there is no prior work on generative 127
models of VDMs, nor a public research dataset for VDMs. 128

Image-to-3D. Early works on single-view 3D reconstruc- 129
tion [15, 16, 22, 45, 67, 78, 83] mostly adopt feed-forward 130
neural networks trained on limited data [11]. More recent 131
work [29, 46, 85, 87] trained on large 3D datasets [19] 132
has shown significantly improved generalizability to novel 133
shape categories. With the introduction of text-to-image 134
diffusion models [49, 53], a line of work [44, 63] achieved 135
zero-shot single-image-to-3D with score distillation sam- 136
pling (SDS) [50] by distilling 2D diffusion priors into 3D 137
representations with per-shape optimization. 138

Another line of work [38, 71] utilizes image diffusion 139
models for novel view synthesis conditioned on an input 140
image and a relative camera pose. Such models produce 141
images of the object from different views, therefore the 142
3D object can be reconstructed by SDS-based optimiza- 143
tion [38, 51] or a feed-forward reconstruction network [37]. 144
These methods inspired a series of subsequent work that 145
finetunes pretrained image diffusion models to directly gen- 146
erate 3D-consistent multi-view images of the target out- 147
put shape given a single-view image, where the output 148
shape can be reconstructed from generated multi-view im- 149
ages via optimizing a neural field or mesh [39, 40, 57], 150
a 3D diffusion reconstruction network [36], or a feed- 151
forward large reconstruction model powered by Transform- 152
ers [27, 34, 64, 68, 70, 72, 74, 76, 86, 88]. Most recently, 153
image diffusion models have been replaced by video diffu- 154
sion models to achieve better 3D consistency of the gener- 155
ated views [24, 65]. 156

Modeling by Parts. The use of small building compo- 157
nents to compose complex shapes has been widely studied 158
in modeling-by-assembly systems [21, 32]. Before gener- 159
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Figure 2. Overview of our image-to-VDM pipeline. Given an input image, we first add a gray square behind the object/part in the
image as background, so the image resembles a textured VDM applied to a square mesh, as in (a). Then we utilize a multi-view image
diffusion model to generate six normal maps with pre-defined camera poses, as in (b). The multi-view normal maps effectively represent
the geometry of the VDM when applied to a square mesh, and thus we can reconstruct the VDM from these normal maps, as in (c). The
reconstructed VDM can then be applied to various surfaces as in (d).

ative AI rose to prominence, these systems relied on part160
databases [12] (or shape databases from which parts could161
be cut out), and focused on building tools to help users find162
the right parts [7, 13, 56, 75] and assemble them meaning-163
fully [28, 60, 77]. As a variation, methods were developed164
to extract and transfer detailed patches from a shape to an-165
other [62]. A few papers studied joint synthesis and layout166
of parts [35], but the synthesis was conditioned only on the167
layout and not on user input, and the focus was on whole-168
shape generation and not adding detail to existing ones.169

Relying on existing part datasets or part generation with-170
out user control, and on complex, non-standard, topology-171
sensitive mesh fusion algorithms limits the utility of these172
older methods. Our approach generates detailed comple-173
mentary geometry in-situ from the image prompt, and our174
generated VDMs are defined over parameterized 2D do-175
mains which are suitable for seamlessly blending onto 3D176
models, with industry-wide support.177

3. Method178

Our image-to-VDM pipeline is shown in Figure 2. Similar179
to other methods in the literature, we follow an approach180
that first generates multi-view images of the target object181
with an image diffusion model and then reconstructs the ob-182
ject from the generated images. In particular, we only gen-183
erate normal maps of the object as we are only interested in184
the geometric details. Details of the multi-view normal gen-185
eration are described in Section 3.1. Next, we reconstruct186
the VDM from the multi-view normals. As VDMs have187
specific properties and constraints, reconstructing them is188
highly non-trivial. We report our attempts and solutions189
in Section 3.2. Finally, as there is no publicly available190
dataset for VDMs, we designed an efficient tool for extract-191
ing shape patches from Objaverse [19], and devised algo-192
rithms to process those patches for use as training data. We193
describe the data processing pipeline in Section 3.3.194

3.1. Multi-View Normal Map Generation 195

We opt to finetune an image diffusion model to generate 196
multi-view images, as the pretrained image diffusion model 197
offers strong generalizability. As will be shown in our ex- 198
periments, our model, trained on a small dataset of 1,200 199
examples, works on a large variety of shapes. 200

Specifically, we adopt Zero123++ [57] as the back- 201
bone for our multi-view diffusion model. Zero123++ is an 202
image-to-multiview model based on Stable Diffusion [53]. 203
Given an input image, Zero123++ generates a 960 × 640 204
image representing six multi-view images in a 3 × 2 grid, 205
where the six images have pre-defined camera poses so they 206
can be easily used for 3D reconstruction. However, the pre- 207
defined camera poses in Zero123++ fully surround the ob- 208
ject, e.g., there are front views and back views of the object. 209
In our pipeline, since we are aiming to generate VDMs, the 210
back views of the object are unnecessary. Therefore, we 211
re-designed the camera poses of the six images. As shown 212
in Figure 2 (b), assuming the front view (see (a) for an ex- 213
ample) has (elevation angle, azimuth angle) = (0◦, 0◦), we 214
define the six camera poses to be (0◦,−60◦), (0◦,−30◦), 215
(0◦, 30◦), (0◦, 60◦), (45◦, 0◦), (−45◦, 0◦). We also adopt 216
orthographic cameras to reduce distortion, and let the model 217
generate a normal map of the object for each camera pose. 218
To train the model, we render single-view RGB images as 219
input and multi-view normal maps as ground truth output. 220
Details about training data is described in Section 3.3. Note 221
that the input image does not have to be a front view; we 222
render random views for training so the model can handle 223
images from various viewpoints. We finetune on the check- 224
point provided by Zero123++ [57] on 8 NVIDIA A100 225
GPUs for 3 days. 226

3.2. VDM Reconstruction 227

Reconstructing 3D shapes from multi-view images has been 228
well studies in the text/image-to-3D literature. Most recent 229
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Figure 3. Reconstructing VDM from multi-view normal maps. We adopt a two-step approach. First, we reconstruct an accurate (but perhaps
noisy) mesh (b) from the multi-view normals (a) with differentiable rendering and neural SDF representation. Then we parameterize the
mesh by fitting a deformable square to it with a neural deformation field, as in (c). An VDM image can thus be obtained by discretizing
the square into pixels and infer each pixel’s displacement from the neural deformation field. The whole reconstruction pipeline takes about
6 minutes for each shape on an NVIDIA A100 GPU, where each step takes about 3 minutes.

methods adopt a feed-forward large reconstruction model230
(LRM) to directly generate a 3D shape from multiple in-231
put images of different viewpoints [27, 34, 64, 68, 72, 86].232
Therefore, a straightforward way for reconstructing VDMs233
is to train a similar LRM to take the normal maps as input234
and directly regress a VDM image. However, given limited235
VDM training shapes, our LRM trained on a small dataset is236
unlikely to generalize as well as other LRM models trained237
on larger datasets, therefore leading to suboptimal results.238

Given the discussions above, we adopt a slower but more239
robust per-shape optimization approach. Given the six nor-240
mal maps with pre-defined fixed camera poses, we want to241
optimize a 3D representation to converge to the target 3D242
shape with supervision provided by differentiable render-243
ing. A naive approach would be to initialize with a dis-244
cretized square mesh and optimize with mesh-based differ-245
entiable rendering. However, as has been shown in other246
methods [33, 47], differentiable rendering on meshes is of-247
ten problematic and requires careful design of regulariza-248
tion losses and tuning of hyperparameters. As we will show249
later, even with ground truth 3D supervision, optimizing a250
discretized mesh to fit the target shape is not an easy task.251

Therefore, we devise a two-step approach, as shown in252
Figure 3, to first optimize a neural SDF field to reconstruct253
a 3D shape from the multi-view normal maps, and then pa-254
rameterize the 3D shape into a VDM image. We utilize255
the method proposed in Wonder3D [40] for the first step,256
with the only modification being that we removed Lrgb, the257
loss term to punish the difference between rendered RGB258
images and the ground truth, as we do not predict multi-259
view RGB images. Since we always put a grey square as260
background in our input images, the shape we obtained via261
optimization has a solid plane-like primitive where the ob-262
ject/part is attached to, see Figure 3 (b); then we can extract263
a mesh from the neural SDF field and easily separate a sin-264
gle layer of mesh that represents the VDM.265

Figure 4. Comparison of different approaches for parameterizing
a shape into VDM. (a) Topology fixing and Tutte embedding with
classic tools leads to noise and distortion. (b) Fitting a plane mesh
to the target mesh leads to large distortion. (c) Our approach by
applying a neural deformation field to a parametric square leads to
clean and high-quality reconstruction.

The next step is to parameterize the mesh into a VDM 266
image. Since the mesh is reconstructed from sparse-view 267
images, its geometry is often noisy and riddled with small 268
holes and large gaps, see Figure 4 (a) left. To convert it 269
into a VDM, we will need to fix its topology so that it is 270
topologically equivalent to a plane; and then we will apply 271
a mesh parametrization method to obtain its Tutte embed- 272
ding on a square, so that each pixel on the square can be 273
assigned with a displacement vector. However, as shown 274
in Figure 4 (a), although the state-of-the-art topology fixing 275
algorithms [84] can fix the topology, the result is often not 276
satisfactory, e.g., a gap that should have been filled is be- 277
ing cut, see Figure 4 (a) middle where the helix of the ear 278
is cut in half. As a result, after applying [55] to obtain its 279
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Figure 5. Data preparation. For each interesting object (a), we use a 3D lasso tool to segment out interesting parts. For each part, we
densely sample points on the part’s surface and then perform Screened Poisson Surface Reconstruction [31] to obtain a single connected
mesh (b). We then stitch the mesh to a square mesh with an algorithm inspired by Poisson Image Editing [48] (c). Afterwards, we can
color the part and render RGB images (d) and normal maps (e) for training the image diffusion model.

embedding on a plane, we see large distortions and noise in280
the final VDM, see Figure 4 (a) right where the upper part281
of the ear is missing due to distortion.282

An alternative is to initialize with an optimizable square283
mesh, and optimize it using a reconstruction loss with re-284
spect to the target mesh, as shown in Figure 4 (b). However,285
as mentioned, it is often required to have carefully designed286
regularization losses when a mesh is to be optimized. When287
adopting a naive optimization method proposed in [14], the288
resulting mesh exhibits large distortion.289

Therefore, instead of tuning the mesh optimization al-290
gorithm, inspired by AtlasNet [22] and Deep Geometric291
Prior [73], we propose to deform the square mesh with a292
neural deformation field parameterized by a Multilayer Per-293
ceptron (MLP). The MLP acts as a natural regularizer, as294
its inductive smoothness bias encourages smoothness of the295
deformation. We define the square to be {p | p ∈ [0, 1]2},296
and the MLP ϕθ with optimizable parameters θ. Then, given297
any 2D point p in the square, we obtain its corresponding298
3D point p′ = ϕθ(p) in the deformed shape. Therefore, for299
each optimization step, we sample a grid of 2D points in300
[0, 1]2, apply ϕθ to obtain the deformed 3D points, and then301
compute the symmetric Chamfer Distance between the de-302
formed 3D points and the ground truth points sampled from303
the target mesh. We also include a loss to maintain square304
boundary. Therefore our optimization objective is305

argmin
θ

EP,Q
1

|P |
∑
p∈P

min
q∈Q

∥ϕθ(p)− q∥22+

1

|Q|
∑
q∈Q

min
p∈P

∥ϕθ(p)− q∥22+

1

|∂P |
∑
p∈∂P

∥ϕθ(p)− proj(p)∥22,

(1)306

where P and Q are sets of sampled points from [0, 1]2 and307
the target mesh, respectively. ∂P contains all the boundary308

points in P and proj(p) maps p to a corresponding 3D point 309
in a pre-defined square boundary. After optimization, we 310
can sample a regular grid of points in [0, 1]2 and compute 311
their 3D displacement vectors from ϕθ to obtain the VDM 312
image, as shown in Figure 4 (c). 313

3.3. Data Preparation 314

To the best of our knowledge, there is no publicly available 315
dataset for VDMs. Therefore, we developed a data pro- 316
cessing pipeline so we can efficiently annotate interesting 317
parts from objects and then convert the parts into VDMs. 318
In fact, our data processing pipeline does not produce true 319
VDMs, but rather, shapes that look like VDMs, which are 320
good enough for training our multi-view generation model, 321
see Figure 5. If needed, our VDM reconstruction method in 322
Section 3.2 can be used to obtain readily usable VDMs. 323

To construct our VDM training dataset, we crop parts 324
from the Objaverse [19] dataset. We first create a keyword 325
filtering list and apply the filter on Objaverse shape cap- 326
tions [41, 42]. As VDMs are mostly used to model organic 327
parts, we select objects likely to contain such parts, e.g., 328
animals and characters. 329

We then developed a UI to precisely crop a part from a 330
3D object. This is achieved by a 3D lasso tool, where the 331
user only needs to select a ring of points along the cutting 332
boundary of the desired part. Our algorithm connects the 333
points to form a cut and extracts the part from the object. 334
Note that the part may not be a single connected mesh – it 335
may comprise several sub-meshes. Hence, we remesh the 336
part into a single connected mesh. We first densely sam- 337
ple points on the part, and then remove interior points by 338
computing winding numbers [8]. For the remaining points, 339
we perform Screened Poisson Surface Reconstruction [31] 340
to obtain a single connected mesh (Figure 5 (b)). Our 3D 341
lasso tool has proven to be quite efficient. Annotating our 342
entire dataset with 1,200 parts took only 24 man-hours. 343
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After obtaining the parts, we will then stitch each part to344
a square mesh to mimic the appearance of a VDM applied345
to a plane. Note that in almost all cases, the vertices on the346
boundary of each part are not coplanar, therefore additional347
steps are required to make them coplanar. We first deter-348
mine the plane via least squares plane fitting with respect to349
the boundary vertices. Then we project the boundary ver-350
tices to the plane, and adopt a method similar to Poisson351
Image Editing [48] to deform the part so that it follows the352
new coplanar boundary. Denote the set of all boundary ver-353
tices in the part (before projection) as B and non-boundary354
vertices as A; also denote the set of all edges as E. De-355
note the coplanar boundary vertices after projection as B′,356
and the non-boundary vertices after deformation as A′. For357
each point p in A or B, denote its corresponding point in A′358
or B′ as p′. Then our new vertices after mesh deformation359
can be obtained by solving a quadratic error function360

argmin
A′

E(p,q)∈E ∥(p′ − q′)− (p− q)∥22. (2)361

The minimization objective is to ensure that the gradients362
on the mesh are preserved as much as possible after defor-363
mation, while the target coplanar boundary points B′ are364
also strictly followed.365

We then place the deformed part on a square mesh so366
that the boundary vertices and the square mesh vertices are367
coplanar. Once the part is attached to the square mesh, we368
perform one additional Laplacian Smoothing step to the ver-369
tices close to the boundary to remove boundary noise, see370
Figure 5 (c). We always keep the square mesh gray and371
assign a random color to the part. We also performs transla-372
tion, scaling, and rotation augmentation to the part to enrich373
the diversity of the dataset. Finally, for each shape, we ren-374
der several RGB images from different viewpoints to serve375
as the training input to the multi-view normal generation376
model, and six normal maps in pre-defined camera poses as377
the ground truth output, see Figure 5 (d, e).378

4. Experiments379

In this section, we verify the effectiveness of our method380
by comparing it with various state-of-the-art methods. We381
also validate our design choices in ablation studies. Fi-382
nally, we present additional results produced by our method,383
show applications of VDMs on adding details to geometry,384
and demonstrate how users can customize VDMs by simply385
editing the input images. We will make our code, trained386
model weights, and dataset available to the public.387

4.1. Vector Displacement Map Generation388

Baselines. Since there is no prior work on generating389
VDMs from single view images, we compare our method390
with methods that perform a similar task, namely, single-391
view image to 3D reconstruction. Specifically, we compare392

our method with Wonder3D [40], Magic123 [51], Large Re- 393
construction Model (LRM) [27], as well as a scalar dis- 394
placement map (scalar DM) reconstruction method based 395
on DepthAnything [81]. Given an input image, Won- 396
der3D [40] generates multi-view RGB and normal images 397
and optimizes a neural SDF field to reconstruct the 3D 398
shape from the multi-view images. Magic123 [51] lever- 399
ages SDS loss [50] to optimize the 3D shape while apply- 400
ing a reconstruction loss on the input view. LRM [27] gen- 401
erates multi-view RGB images and trains a Transformer- 402
based feed-forward model to reconstruct the 3D shape from 403
the multi-view images. To validate the necessity of gen- 404
erating vector displacement map instead of regular scalar 405
displacement map, we also compare with a state-of-the-art 406
depth prediction method, DepthAnything [81], by convert- 407
ing the predicted depth of the object into a scalar DM. 408
We run these baseline models with official implementation 409
and pretrained weights; except that LRM does not release 410
the official code, so we use open-source implementation 411
OpenLRM [25] instead. For all the reconstructed shapes, 412
we render textureless images for visualization and evalua- 413
tion. For Wonder3D, Magic123, and LRM, as they generate 414
complete objects and not VDMs, we put a square plane be- 415
hind their generated shapes to make the visualization more 416
consistent and to have a fair quantitative comparison. 417

Evaluation Dataset and Metrics. As there is no exist- 418
ing benchmark dataset for VDMs, we collected a dataset 419
of 50 RGB images from the Internet and a text-to-image 420
model [5] for evaluation. All images depict common VDM 421
categories used by artists such as facial elements and deco- 422
rations. For quantitative evaluation, we measure CLIP sim- 423
ilarity [52] and 3D-FID score [69] between the input im- 424
age and the rendered images of the generated shapes from 425
different views, denoted as CLIPImg and 3D-FID, respec- 426
tively. For CLIP, we additionally evaluate semantic align- 427
ment by measuring CLIP similarity between the rendered 428
images and the texts describing the categories of the input 429
images, denoted as CLIPText. We use public implementa- 430
tion of CLIP [59] and 3D-FID [54] for computing the met- 431
rics. Please see Supplementary Material for more details. 432

The quantitative results are summarized in Table 1 and 433
qualitative results are presented in Figure 6. Quantitatively, 434
our method outperforms others by a significant margin. The 435
closest competitors to our method are Wonder3D and scalar 436
DM, which is also reflected in the qualitative results in Fig- 437
ure 6. Magic123 and LRM lack geometric detail as they rely 438
heavily on textures which often hallucinate details in ge- 439
ometry. Wonder3D has a similar shape generation pipeline 440
with ours, yet it was designed to generate complete objects. 441
Therefore, it struggles to generate partial shapes, e.g., noses 442
and ears. Although the results of scalar DM look reason- 443
able from the front view, its side view suffers as scalar DM 444
cannot represent unseen regions of the front view. 445
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Input images Magic123 LRM Wonder3D Scalar DM Ours
Figure 6. Qualitative results compared with baseline methods. As Magic123 [51], LRM [27], and Wonder3D [40] generate complete
objects and not VDMs, we put a square plane behind their generated shapes to make the visualization more consistent.

Input images Reconstructed meshes (a) Topological fixing 
& Tutte embedding (b) Mesh optimization (c) Our approach  

(Neural Deformation Field)
Figure 7. Qualitative results of ablation study.
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Method CLIPImg↑ CLIPText↑ 3D-FID↓
Wonder3D [40] 0.8246 0.2542 199.5
Magic123 [51] 0.8293 0.2510 213.2
LRM [27] 0.8144 0.2510 239.9
Scalar DM 0.8223 0.2564 213.0
Ours 0.8520 0.2701 192.7

Table 1. Quantitative comparison with baseline methods. Scalar
DM stands for scalar displacement map produced from DepthAny-
thing [81].

Method CLIPImg↑ CLIPText↑ 3D-FID↓
Recon. Mesh 0.8440 0.2636 198.0
Topo. Fix(a) 0.8401 0.2617 209.9
Mesh Opt.(b) 0.8245 0.2525 217.2
Ours(c) 0.8521 0.2701 192.7

Table 2. Quantitative ablation on VDM Reconstruction.

(a) Original (b) Edition 1 (c) Edition 2
Figure 8. Customizing VDMs by editing images. Here we show
original input images and generated VDMs in (a) and edited im-
ages and their generated VDMs in (b)(c).

4.2. Ablation Study446

As discussed in Section 3.2, we compare the following set-447
tings for parameterizing the reconstructed mesh into a VDM448
image: (a) Topology fixing and Tutte embedding, (b) fit-449
ting a square mesh into reconstructed mesh, and (c) our ap-450
proach; see Figure 4. We also include the reconstructed451
mesh before parameterization as a reference baseline. Ta-452
ble 2 summarizes quantitative results and Figure 6 shows453
qualitative comparisons. Topological fixing and Tutte em-454
bedding suffer when the topology of the reconstructed mesh455
is complex due to noisy reconstruction results, as shown in456
Figure 6 (a). This is because the topological fixing algo-457
rithm does not consider the distortion after parameterization458
as one of its optimization goals, thus some topological fixes459
may significantly increase distortion. Figure 6 (b) shows460
that mesh optimization is not reliable in our setting, and461
is likely to fall into local minima during optimization. In462
contrast, our method, shown in Figure 6 (c), not only recon-463
structs high quality VDMs with correct topology, but also464
smooths out noise induced in neural SDF reconstruction,465
leading to visually more pleasing results.466

(a) Input image (c) Reconstructed mesh (d) Final VDM(b) Normal maps

Figure 9. Failure case.

4.3. Application 467

Shape modeling. With our method, users are able to 468
generate parts of the shape from single-view images or 469
text prompts (via text-to-image to obtain the input to our 470
method). Compared with methods that generate complete 471
shapes, our method naturally provides more controllability, 472
as users can start with a coarse shape and add customization 473
details and shape parts, see Figure 1. We also show a video 474
in the Supplementary Material to demonstrate the modeling 475
process with VDMs generated by our method. 476

Part editing. With our image-to-VDM, one can perform 477
editing in 2D image space and change the appearance of the 478
part in 3D, see Figure 8. Editing in image space is typically 479
much more convenient than sculpting 3D shapes, therefore 480
allowing users to customize their parts with ease. 481

5. Conclusion, Limitation, and Future Work 482

In this work, we propose a method to generate a VDM from 483
an input single-view image. Our method first finetunes a 484
pretrained image diffusion model to generate multi-view 485
normal maps from the input image, and then reconstructs 486
a VDM image from the multi-view normals. The gener- 487
ated VDMs can be used directly in shape modeling, which 488
provide more freedom to the users on the appearance and 489
position of each part on the shape. We also propose an effi- 490
cient pipeline for creating a VDM dataset from 3D objects. 491
Our method outperforms state-of-the-art image-to-3D mod- 492
els and scalar displacement map baseline, proving that our 493
approach is more suited for VDM generation. 494

As discussed in Section 3.2, our VDM reconstruction 495
involves per-shape optimization, making its inference time 496
significantly slower than the current image-to-3D methods 497
with feed-forward LRM. Investigating the possibility of a 498
VDM-LRM with limited training data is of great interest 499
to us. For certain shapes with thin structures, our method 500
cannot produce plausible results, while the generated nor- 501
mals look reasonable, see Figure 9. We suspect it is due 502
to the multi-view images being inconsistent across different 503
views, as observed by many other works [24, 65]. 504

VDMs are predominantly used for modeling or- 505
ganic shapes, yet the idea of modeling-by-parts can be 506
applied to the majority of 3D shapes. There are excit- 507
ing further avenues for part-based 3D generative models. 508
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