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Figure 1: Our method computes the relative rotation between two normalized shapes by aligning spherical harmonic coeffecients

Abstract
This paper studies the classical problem of 3D shape alignment, namely computing the relative rotation between two shapes
(centered at the origin and normalized by scale) by aligning spherical harmonic coefficients of their spherical function
representations. Unlike most prior work, which focuses on the regime in which the inputs have approximately the same shape,
we focus on the more general and challenging setting in which the shapes may differ. Central to our approach is a stability
analysis of spherical harmonic coefficients, which sheds light on how to align them for robust rotation estimation. We observe
that due to symmetries, certain spherical harmonic coefficients may vanish. As a result, using a robust norm for alignment that
automatically discards such coefficients offers more accurate rotation estimates than the widely used L2 norm. To enable efficient
continuous optimization, we show how to analytically compute the Jacobian of spherical harmonic coefficients with respect to
rotations. We also introduce an efficient approach for rotation initialization that requires only a sparse set of rotation samples.
Experimental results show that our approach achieves better accuracy and efficiency compared to baseline approaches.

CCS Concepts
• Computing methodologies → Collision detection; • Hardware → Sensors and actuators; PCB design and layout;

1. Introduction

Estimating the relative pose between two 3D shapes is a fundamental
problem in many applications. A relative pose consists of a scaling
component, a translation component, and a rotation component. The
scaling and translation components can be computed using standard
normalization procedures, e.g., the barycenter of each shape is at
the origin and the trace norm of each shape moment is 1. In contrast,
normalizing the rotation component (e.g., using principal directions
of the second-order shape moment) is extremely difficult. It turns out
that the most reliable approach to the estimation of relative rotation
is to optimize a matching loss in the rotation space SO(3). This
problem is quite challenging, as the optimization problem is usually
non-convex and has many local minima.

To this end, remarkable progress has been achieved by converting

3D shapes into spherical functions and aligning coefficients of spher-
ical harmonics (i.e., Fourier bases on spheres) for relative rotation
estimation [MPD06, MD06, FRB08, HSZ∗05, Kaz07]. In particular,
under the Euler angle representation, the Wigner-D matrix [HMR09]
allows us to compute the L2 distance between the coefficients of
spherical harmonics with time complexity O(b4) on a grid of res-
olution b3, where b is the number of samples in each Euler angle.
However, for real-time performance, even with this fast algorithm,
we can only use a small b (b ≤ 40), leading to an angular error from
10◦ to 20◦. This error is significant for many downstream applica-
tions. Although there are more efficient approaches, e.g., [Kaz07],
these are typically approximate and there are performance gaps from
the original formulation. In addition to efficiency, another issue is
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that the L2 norm does not offer good performance when the two
input shapes have large inter-shape variations (see Figure 1).

In addition to aligning 3D shapes, developing a principled
approach for rotation alignment of spherical harmonics has far-
reaching implications in many other areas. One example is to con-
struct equivariant/invariant neural networks using spherical harmon-
ics. An accurate and efficient relative rotation estimation approach
allows us to align spherical harmonics in a shawhen red coordinate
system for representation learning, in which representations and
rotations are jointly optimized. Otherwise, we have to use the expen-
sive Wigner-D matrix representation [TSK∗18, PRPO19, EAMD20,
PG21] to model invariance/equivariance, introducing redundancies
across different layers.

In this paper, we study the problem of relative rotation estimation
using spherical harmonics from the lens of numerical optimization.
We present three key contributions. First, we develop a simple,
analytical, and sparse expression of the derivatives of spherical
harmonic coefficients with respect to rotations. We show that this
Jacobian allows efficient continuous optimizations, e.g., using the
Gauss-Newton method.

Second, we present a stability analysis of the spherical harmonic
coefficients under perturbed spherical functions. One key insight
is that some coefficients vanish and aligning these coefficients are
essentially aligning noise which does not offer useful constraints.
Therefore, when two input shapes are less similar, using a robust
norm to align spherical harmonic coefficients can automatically
discard the alignments of those vanishing coefficients, leading to
improved alignment results.

Third, we introduce an approach to compute a candidate set of
initial rotations for local refinement. Our approach only requires
computing the alignment scores using a low-resolution Wigner-
D matrix. We show how to extract potential local minima from
a sparse set of samples, using both the alignment scores and the
derivatives of the alignment scores computed from the Jacobian
described above. These three contributions, when combined together,
lead to an efficient and robust relative rotation estimation pipeline.

We have evaluated our approach on the ShapeNetPart
dataset [YKC∗16]. Experimental results show that our approach
outperforms baseline approaches both quantitatively and qualita-
tively. An ablation study justifies the effectiveness of the three key
contributions of our approach, i.e., a local optimization procedure
that uses the Gauss-Newton method, a robust norm to align spherical
harmonic coefficients, and an efficient approach to detect candidate
local minima.

2. Related Work

2.1. Rotation Estimation

Early approaches in rotation estimation are based on principal com-
ponent analysis (PCA) and aligning principal directions with the
axes. As pointed out in the seminar paper [KFR03], this approach
does not work well when the principal values are close to each other.
In addition, it is difficult to determine orientations such as up-and-
down and left-and-right. Additional efforts are needed to address
such ambiguities, c.f., [RL18].

Another approach to relative rotation estimation or relative rigid
pose estimation is to detect and match features that satisfy the
rigidity constraints. These include RANSAC [SWK07], general
Hough transform [MGP06, PMW∗08, MAM14], and their vari-
ants [AMC08, BTP13]. We refer to [TCL∗13] for a survey on this
topic. These approaches are designed to match different scans of the
same object. Their advantages are in matching partially overlapped
and incomplete scans. However, they do not apply well when two
objects have different geometric shapes. In these cases, it is very
difficult to detect invariant feature points and compute invariant
feature descriptors.

A more robust way is to optimize a matching function in the space
of SO(3). Usually, the function is non-convex, requiring an initial
solution to begin with. This requires efficient methods to sample
SO(3), and many methods [Kar07, Mar72, Mit08, YJLM10, Ale22]
have been introduced in the literature. However, these methods have
focused on generating samples that are evenly distributed in SO(3).
Although they can be applied to any matching function, they are
inefficient as evaluations at different samples are independent. This
issue is partially addressed using spherical harmonics to define the
matching function, which we will discuss in Section 2.3.

Learning-based approaches have also been introduced for relative
rotation estimation. A common paradigm [KGC15, CHSA21] is to
extract features from input objects, which are fed into a correlation
module for the estimation of poses. Several methods have shown
impressive results in the setting of matching 3D scans of an ob-
ject or a 3D scene, including DCP [LWZ∗19], PNetLK [AGSL19],
FCGF [CPK19], Predator [HGU∗21], RoReg [WLH∗23], and
GeoTF [QYW∗23]. Although it is possible to extend these ap-
proaches to estimate the relative rotation between similar but differ-
ent objects, a fundamental issue of learning-based approaches is the
generalization issue and the challenge in handling uncertainties in
the output, e.g. due to symmetries. Another issue of learning rota-
tion invariance is the need to have larger perturbed dataset, larger
networks which ends up with larger learning and processing time.

2.2. Spherical Harmonics

Spherical harmonics form a frequency-space basis for represent-
ing functions defined over the sphere. They are the spherical ana-
logue of the 1D Fourier series. Spherical harmonics have been
used in a wide range of scientific domains [MS67, Tin03]. Spher-
ical harmonics also have direct applicability in rendering. No-
table applications in light transport spherical harmonics include
early work in [CMS87] and [SAWG91] and subsequent explo-
rations [Ram02, Gre03, Wym04, Slo08]. An important property of
spherical harmonics is that, a rotated spherical basis can be ex-
pressed as the linear combination of spherical bases of the same
frequency, cf. [Gre03]. In addition, the L2 norm of the coefficients of
the same frequency remains constant under rotation. In the literature,
people have explored these properties to develop rotation-invariant
shape descriptors for shape retrieval purposes [KFR03]. [MZA∗18]
introduced invariant descriptors based on radial Hahn moments,
which extend spherical harmonics. In contrast, this paper studies
how to align the spherical harmonic coefficients for relative rotation
estimation.

Symmetry detection using spherical harmonics has been stud-
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Figure 2: Our approach has three stages. (a) The first stage converts the input shapes into a series of paired spherical functions. (b) The
second stage predicts a candidate set of relative rotations using a weighted L2-norm between SH coefficients evaluated on a sparse set of
rotation samples. (c) The third stage performs robust local refinement from each candidate rotation and returns the global minimum.

ied in [KCD∗04, Rus07, KKP13, LJYL16]. In the seminal pa-
per [MSHS06], the authors introduced an approach to derive global
rotational symmetries using polynomial moments that can be com-
puted efficiently using spherical harmonics. The stability analysis
results in this paper are based on the foundation work in [AB63],
which is systematically introduced in [BC10]. In this paper, we focus
on how to use these results to develop a robust objective function
for the estimation of relative rotation.

2.3. Rotation Estimation Using Spherical Harmonics

A fundamental challenge of using spherical harmonic coefficients
for rotation estimation is that the coefficients are polynomials of
the rotation matrix, in which the order of the polynomial is the
frequency order of the associated basis function. This makes it diffi-
cult to derive closed-form solutions that align spherical harmonics,
c.f., [HTB18]. In fact, the most efficient algorithms for computing
these polynomials are based on recursion [IR98, CIGR99].

An important development in spherical harmonics is that, un-
der the Euler angle representation, the coefficients under a ro-
tation are decoupled into transformations under different Euler
angles [BH95, RK99]. This leads to an algorithm (similar to
the fast Fourier transform) that computes the correlations be-
tween the rotated coefficients of one function and the coefficients
of another function under a uniform sampling of Euclidean an-
gles [MPD06, MD06, FRB08, HSZ∗05]. This algorithm, which in-
volves the representation of the Wigner-D matrix [HMR09], has
stimulated a wave of developing equivariant/invariant 3D neural
networks [TSK∗18, PRPO19, EAMD20, PG21].

However, this algorithm is still expensive, prohibiting one from
obtaining accurate solutions that require a very dense sampling
grid. [Kaz07] introduced an approach that first predicts the rotation
axis followed by a prediction of the rotation angle. Yet, this approach
comes with an approximation, and there is a gap between the more
expensive but accurate approach.

Our approach advances this line of work by introducing a novel
objective function for rotation optimization and a local optimization

approach that can refine an initial rotation. This local optimiza-
tion approach is extremely fast, allowing us to test multiple initial
rotations. Compared to prior work [SKS09,SFM09] that performs al-
ternating optimization of Euler angles, our approach enables Gauss-
Newton optimization of rotations and is much faster. The efficiency
of our approach enables us to apply the Wigner-D matrix on a coarse
grid and extract a candidate set of initial rotations for refinement.

3. Overview

The input to our approach consists of a source shape P and a target
shape Q. We assume that they are normalized so that for each shape
x ∈ {P,Q}

cx = 0, tr(Cx) = 1.

where cx ∈ R3 and Cx ∈ R3×3 are the barycenter and the moment
matrix of x, which are computed from uniform point samples on x.

As shown in Figure 2, the key idea of our approach is to pre-
processes each input shape into a sequence of spherical functions,
i.e., f P,i,1 ≤ i ≤ nr for P and f Q,i,1 ≤ i ≤ nr for Q, which are
signed distance functions of P and Q on spheres with increas-
ing radii. We will encode these spherical functions using spheri-
cal harmonic coefficients. With f P,i

l (R) ∈ R2l+1,1 ≤ l ≤ lmax and
f Q,i

l (R) ∈ R2l+1,1 ≤ l ≤ lmax we denote coefficient vectors of l-th
order of f P,i and f Q,i under rotation R in their own coordinate sys-
tem. The definitions of spherical harmonics and their properties are
introduced to Section 4. The construction of f P,i and f Q,i will be
described in Section 7.1.

We formulate relative optimization as finding the global optimal
of the following optimization problem:

argmin
R

e(R), e(R) =
nr

∑
i=1

lmax

∑
l=1

wil∥ f P,i
l (R)− f Q,i

l ∥2. (1)

Note that unlike prior work [HSZ∗05, SFM09] that uses uniform
weights wil = 1, our analysis in Section ?? shows that it is im-
portant to use weights that are tailored for different frequencies.
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In Section 7.2 and Section 7.3, we will introduce a global-2-local
optimization strategy to solve Eq. (1).

In the following, we will first review basics of spherical harmonics
in Section 4. We then introduce two technical contributions of this
paper, i.e., Jacobian of rotating spherical harmonics (Section 5) and
a stability of spherical harmonic coefficients (Section 6).

4. Technical Background

This section introduces relevant technical background material of
spherical harmonics which we will use in this paper.

4.1. Spherical Harmonics

A function f on a sphere is typically expressed using the spheri-
cal coordinates (θ,φ) or the corresponding Cartesian coordinates
(x,y,z) = (sin(θ)cos(φ),sin(θ)sin(φ),cos(θ)). The norm of a func-
tion f and the inner product between two functions f and g are
given by

∥ f∥2 =
∫ π

θ=0

∫ 2π

φ=0
f 2(θ,φ)sin(θ)dφdθ,

⟨ f ,g⟩=
∫ π

θ=0

∫ 2π

φ=0
f (θ,φ)g(θ,φ)sin(θ)dφdθ.

The Fourier bases for spherical functions are the so-called spheri-
cal harmonics

Y m
l (θ,φ) =


√

2Km
l cos(mφ)Pm

l (cos(θ)) m > 0
K0

l P0
l (cos(θ)) m = 0√

2Km
l sin(−mφ)P−m

l (cos(θ)) m < 0
(2)

where Km
l and the associated legendre polynomials Pm

l (z) are given
by

Km
l =

√
2l +1

4π

(l −|m|)!
(l + |m|)! , Pm

l (z)=
(−1)m

2l l!
(1−z2)

m
2

∂
l+m(x2 −1)l

∂l+mx
.

Pm
l (z) can be efficiently computed using recursion [PTVF92].

Y m
l (θ,φ) form an orthonormal basis for spherical functions.

Specifically, for any function f (θ,φ), in which ∥ f∥2 <∞, we have

f (θ,φ) =
∞
∑
l=0

l

∑
m=−l

f m
l Y m

l (θ,φ), f m
l = ⟨ f ,Y m

l ⟩. (3)

The sum
lmax

∑
l=0

l
∑

m=−l
f m
l Y m

l (θ,φ) offers an approximation of f that

preserves its low-frequency components up to lmax. Aligning the
coefficients f m

l and gm
l for a reasonable lmax becomes a natural

objective to estimate the underlying rotation between f and g. To
this end, we need to understand how to describe rotated spherical
functions using spherical harmonics, which we will describe next.

4.2. Rotating Spherical Harmonics and the Wigner-D Matrix

Denote the Cartesian coordinates as p = (x,y,z)T . We define the
rotated function of f under R as

fR(p) = f (RT p).

fR is also a spherical function. Consider its Fourier series:

fR(θ,φ) =
∞
∑
l=0

l

∑
m=−l

f m
l (R)Y m

l (θ,φ),

where f m
l (I3) = f m

l . A very important property regarding spherical
harmonics is that f m

l (R) is a weighted combination of f m′

l ,−l ≤
m′ ≤ l where the weight of each f m′

l is a function of R. Moreover,

l

∑
m=−l

f m
l (R)2

=
l

∑
m=−l

f m
l

2
.

On the other hand, each weight is a polynomial of R of order l. For
an arbitrary rotation R, the most effective way to compute f m

l (R) is
through recursion [IR98].

Analytically, the simplest expression f m
l (R) comes from the Euler

angle (α,β,γ) expression of a rotation R(α,β,γ) = cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1

 cos(β) 0 −sin(β)
0 1 0

sin(β) 0 cos(β)


 cos(γ) −sin(γ) 0

sin(γ) cos(γ) 0
0 0 1

 . (4)

Under Eq. (4), f m
l (R) admits the following expression using the

Wigner-D representation Dl
mn(α,β,γ), c.f. [SFM09, BH95, RK99],

f m
l (α,β,γ) =

l

∑
n=−l

Dl
mn(α,β,γ) f n

l (5)

where

Dl
mn(α,β,γ) = Re

(
e−iγndl

mn(β)e
−iαm) (6)

and

dl
mn(β) =

min(l+n,l−m)

∑
t=max(0,n−m)

(−1)t
√

(l +n)!(l −n)!(l +m)!(l −m)!
(l +n− t)!(l −m− t)!(t +m−n)!t!(cos(β)

2
)2l+n−m−2t( sin(β)

2
)2l+m−n

.

Let

ξ = α−π/2, η = π−β, ω = γ−π/2.

We can rewrite

Dl
mn(α,β,γ) = ∑

h
Dl

mh(ξ,π/2,0)Dl
hn(η,π/2,ω)

= ∑
h

dl
mhdl

hnexp
(
− i(mξ+hη+nω)

)
(7)

where dl
mn = dl

mn(π/2).

Consider the correlation function between a spherical function f
under rotation R(α,β,γ) and another spherical function g:

c(α,β,γ) :=
lmax

∑
l=0

l

∑
m=−l

f m
l (α,β,γ)gm

l .

The Wigner-D matrix leverages the decomposition in Eq. (7) and
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computes c(α,β,γ) at even samples of α, β, γ using an approach
that is similar to fast Fourier transform:

c(α,β,γ) = ∑
l,m,h,n

dl
mhdl

hn f n
l gm

l exp
(
i(mξ+hη+nω)

)
= ∑

m,h,n
T (m,h,n)exp

(
i(mξ+hη+nω)

)
where T (m,h,n) = ∑l dl

mhdl
hn f n

l gm
l . It can be accelerated by an in-

verse fast Fourier transform.

However, this Wigner-D matrix representation is still expensive to
compute when the sampling density is high. One way to address the
issue of running time is to leverage GPU, e.g., using the rotated zonal
harmonic basis (RZHB) [NSF12]. This paper looks at this problem
from the perspective of numerical optimization. In particular, when
having a good initial rotation, which we will see how to predict
using a low-resolution Wigner-D, we only need derivatives of f m

l (R)
with respect to R to refine the rotation. The next section presents
a result that shows that these derivatives have highly simple and
sparse expressions.

5. Jacobian of Rotating Spherical Harmonics

In continuous optimization, e.g., using the Gauss-Newton method,
we only need the Jacobian of f m

l (R) with respect to R at the 3×3
identity matrix I3. This section shows that this Jacobian can be de-
scribed using a constant sparse matrix, greatly facilitating local opti-
mization of R. Relevant developments include [KKP∗06,MMBP22],
which compute the derivatives of f m

l (R) under the Euler angle rep-
resentation in Eq. (4). However, their methods are based on a rather
recursion. In contrast, we present the explicit formulation under the
angle-axis representation, which is simple and efficient.

Our main result of this section is an expression of Y m
l (θ+dθ,φ+

dφ) as linear combinations of Y m
l (θ,φ) where dθ and dφ are incurred

by a rotation R ≈ I3. To this end, we need a parametrization of R in
this neighborhood of I3, which is given by

R ≈ I3 +

 0 −vz vy
vz 0 −vx
−vy vx 0

 . (8)

Next, we describe the relation between dθ and dφ

with (vx,vy,vz). In the local regime, the spherical point
(x,y,z) = (sin(θ)cos(φ),sin(θ)sin(φ),cos(θ)) will be trans-
formed to (x′,y′,z′) = (sin(θ+dθ)cos(φ+dφ),sin(θ+dθ)sin(φ+
dφ),cos(θ+dθ)) where

x′ = x+ vyz− vzy, y′ = y+ vzx− vxz, z′ = z+ vxy− vyx.

This leads to the following proposition.

Proposition 1 We have

dθ = vy cos(φ)− vx sin(φ),

dφ = vz −
cos(θ)
sin(θ)

(
vx cos(φ)+ vy sin(φ)

)
.

Proof See Appendix A.

Now we are ready to present our result on the expression of
Y m

l (θ+dθ,φ+dφ) as linear combinations of Y m
l (θ,φ).

Theorem 1 Introduce
m = 0 m = 1 m > 1

am
l =

√
(l+1)l

2

√
(l+m+1)(l−m)

2

√
(l+m+1)(l−m)

2

bm
l = 0

√
(l)(l+1)

2

√
(l−m+1)(l+m)

2
Then,

Y m
l (θ+dθ,φ+dφ)−Y m

l (θ,φ) = vz(−mY−m
l (θ,φ))

+ vx

(
a|m|

l Y−m−sign(m)
l (θ,φ)+b|m|

l Y−m+sign(m)
l (θ,φ)

)
+ vy

(
−a|m|

l Y m+sign(m)
l (θ,φ)+b|m|

l Y m−sign(m)
l (θ,φ)

)
. (9)

where sign(0) = 0; sign(m) = 1 when m > 0; sign(m) =−1 when
m < 0; Y j

i (θ,φ) = 0 where | j|> i.

Proof See Appendix B.

Theorem 1 suggests the following simple expression of coeffi-
cients of spherical harmonics when rotating a spherical function.
Denote f l(R) = ( f−l

l (R); · · · , f l
l (R)) as the l-th coefficient vector of

a spherical function under rotation R, where f m
l (R) is the coefficient

in front of Y m
l . When R is approximated according to Eq. 8, we have

f l(R)≈ (I + vxAx
l + vyAy

l + vzAz
l ) f l (10)

where Ax
l , Ay

l , and Az
l are constant sparse matrices whose elements

are given by a|m|
l and b|m|

l . In other words, they can be precomputed,
making local optimization of R using f l(R) highly efficient.

6. Stability Analysis

This section studies the magnitudes of the spherical harmonic coef-
ficients of spherical functions that have self-symmetries. We show
that in the presence of certain discrete symmetry groups in 3D, the
coefficients of certain frequencies are zero. An important implica-
tion is that when aligning shapes perturbed from the same shape that
have such symmetry groups, we should avoid aligning coefficients
of these frequencies that correspond to noise. An analysis supporting
this claim is presented in Appendix E.

To understand this argument, let us first look at circular functions
in 2D. Suppose a circular function f : [0,2π) → R is k-way sym-
metric, i.e., f (φ+ 2 jπ

k ) = f (φ),∀φ ∈ [0, 2π

k ),1 ≤ j < k. Consider its
Fourier coefficients

f2i−1 =
1

2π

∫ 2π

0
f (φ)cos(iφ) f (φ)dφ,

f2i =
1

2π

∫ 2π

0
f (φ)sin(iφ) f (φ)dφ.

Proposition 2 if f is k-way symmetric, then ∀i,mod(i,k) ̸= 0,

f2i−1 = f2i = 0.

Proofs can be found in Appendix C.

The cases in 3D are more complicated. Let vector f l =

( f−l
l , · · · , f l

l )
T ∈ R2l+1 collect all Fourier coefficients in order l.

Our main result is described below.

Theorem 2 Let G be a discrete 3D symmetry group, namely, a finite
subgroup of SO(3). A spherical function f is invariant under its
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Figure 3: We show deviations of spherical harmonics coefficients of signed-distance functions on a sphere around a collection of shapes.
We show the spherical function of the largest radius defined in Figure 7.1.Two collections are shown here, each of which has 20 shapes and
l ≤ 20. (a) Samples of each collection. (b) Magnitudes of log(∥ f l∥) among the entire shape collection. Mean is bold-faced. (c) Magnitudes of

log10.1145/2602161.2602167(∥ f l −gl∥) among all pairs of shapes. Mean is bold-faced (d) Ratios 2∥ f l−gl∥
∥ f l∥+∥gl∥

. Mean is bold-faced.

group action if ∀g ∈ G, f (g ·x) = f (x). For a function f invariant
under one of the five types of finite subgroups of SO(3), its spherical
harmonic coefficients fl can only be non-zero in the following cases

Group type Non-zero coefficients fl ̸= 0
Cn Cyclic group All l ∈ N
Dn Dihedral group l ≡ 0 mod 2
T Tetrahedral group l ∈ {0,3,4,6,7,9,10, · · ·}
O Octahedral group l ∈ {0,4,6,8,10,12, · · ·}
I Icosahedral group l ∈ {0,6,10,12,15,16,18,20, · · ·}

All other spherical harmonic coefficients not listed in this table
vanish under the respective symmetries.

Proofs and computations are in Appendix D.

Define the ratio

s( f l ,gl) =
∥ f l −gl∥

∥ f l∥+∥gl∥+ ϵ
(11)

where ϵ= 10−10. Under perfect symmetries, we have s( f l ,gl) = 0,
if l falls into the conditions of Table 2. Although the objects we
encounter in practice do not have perfect rotational symmetries,
and their SH coefficients do not vanish, we still observe certain
vanishing effects in SH coefficients among many categories (see
Figure 3(a)).

Specifically, Figure 3(b) shows that the norms of the SH coeffi-
cients do vibrate (small-large-small) among the first few frequencies,
as the underlying shapes in Car and Airplane have approximate D4
symmetries. Moreover, although ∥ f l −gl∥ decreases when increas-
ing l (see Figure 3(c)), s( f l ,gl) exhibits exhibits desired properties.

As shown in Figure 3(d), for both Airplane and Car, l = 2 has the
smallest ratio, and the next smallest ratio is at l = 4. Their behaviors
at l = 1 are different. We will use these patterns to design weighting
functions used in aligning spherical harmonic coefficients.

In Section 7.1 and Section 7.3, we show how to weight SH coeffi-
cients for global initialization and local refinement, respectively.

7. Approach

This section presents details of our three-stage relative rotation
estimation approach. In Section 7.1, we discuss how to pre-process
the input shapes P and Q into a sequence of spherical functions
f P,i and f Q,i. In Section 7.2, we describe the second stage, which
extracts a candidate set of rotations of Eq. (1) evaluated at a sparse
set of rotation samples. They are calculated from a low-resolution
Wigner-D matrix. With Rin ⊂ SO(3) we denote the set of candidate
rotations obtained from stage two. In Section 7.3, we introduce the
final stage that performs the local optimization of Eq. (1), starting
from each candidate rotation R ∈ Rin. Our algorithm returns the
best solution to the global objective function in the final stage.

7.1. Pre-processing

We define f P,i and f Q,i using signed distance functions of P and Q.
Denote dP(x,y,z) : R3 →R as the signed distance from P at (x,y,z).
Under spherical coordinates, f P,i at radius ri is given by

f P,i(θ,φ) = dP
(
ri sin(θ)cos(φ),ri sin(θ)cos(φ),ri cos(θ)

)
. (12)

f Q,i is defined similarly. We choose ri,1 ≤ i ≤ nr = 5 uniformly
from rmin = 0.5 to rmax = 2
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Figure 4: We show correlations between s( f P,i
l , f Q,i

l ) and ϵil for
different l. We can see that they are correlated when l = 2 and l = 4,
i.e., when ∥ f P,i

l ∥ and ∥ f Q,i
l ∥ are large. The correlations reduce when

these two norms are small.

We proceed to determine wil in Eq. (1) for the global rotation
initialization phase. As we do not know the underlying rotation
between f P,i and f Q,i, we find that we can use ∥ f P,i

l ∥ and ∥ f Q,i
l ∥,

which are invariant when rotating f P,i and f Q,i, to approximate
s( f P,i

l , f Q,i
l ). Introduce

ϵ( f P,i
l , f G,i

l ) =
|∥ f P,i

l (I3)∥−∥ f Q,i
l ∥|

∥ f P,i
l (I3)∥+∥ f Q,i

l ∥
.

Figure 4 plots ϵ( f P,i
l , f G,i

l ) and s( f P,i
l , f Q,i

l ) for different i and l on
the Airplane and Car datasets shown in Figure 3. We can see that
when the norms of ∥ f P,i

l ∥ and ∥ f Q,i
l ∥ are large (i.e., when they

provide effective constraints on the underlying rotation), the value
of ϵ( f P,i

l , f G,i
l ) offers a good approximation of s( f P,i

l , f Q,i
l ). In light

of this observation, we use ϵ( f P,i
l , f G,i

l ) to define

wil = exp(−
ϵ( f P,i

l , f G,i
l )2

2σ2 ), (13)

where we set σ = 0.5 in all of our experiments. In other words, we
assign a very small weight when ϵil is large.

7.2. Initial Rotation Estimation

Our goal is to compute a candidate set of initial rotations Rin that
approximate strong local minima of e(R) in Eq. (1), where wil is
given by Eq. (13) and is independent of the target rotation. Note that

e(R) =
nr

∑
i=1

lmax

∑
l=1

wil

(
∥ f P,i

l (I3)∥2 +∥ f Q,i
l ∥2

)
−2c(R) (14)

where

c(R) =
nr

∑
i=1

lmax

∑
l=1

wil f P,i
l (R)

T
f Q,i

l .

Using the Wigner-D matrix representation described in Section 4.2,
we can compute c(R(α,β,γ)) on uniform samples of α, β, and γ.
This leads to values of e(R) in the corresponding rotation samples.
In our implementation, we place nα = 24 samples in α, nγ = 24
samples in γ, and nβ = 12 samples in β. In other words, the angle
between adjacent samples is 15◦ in α, β, and γ.

To detect strong local minima of e(R), we find (αi,βi,γi) where
e(R(αi,βi,γi)) is a local minimum among the 27 neighbors of
(αi,βi,γi). In the remainder of this paper, we will call them discrete
local minima. These discrete local minima, which are computed at
a coarse resolution, essentially remove weak local minima.. On the
other hand, they are inaccurate as they are on the grid.

We present a rectification step to improve the initial rotation
estimations. For each discrete local minimum (αi,βi,γi), we pa-
rameterize R locally as exp(v×)R(αi,βi,γi) and approximate e(R)
locally using a quadratic function

ê(v,A) = e(R(αi,βi,γi))+ vT b+
1
2

vT Av,

where b is given by ∂e(R)
∂v and can be computed by substituting

Eq. (10) into Eq. (1). Given b, we compute the symmetric matrix A
by solving the following optimization problem

min
A

∑
(α j ,β j ,γ j)∈N (αi,βi,γi)

(
ê(vi j,A)−e(R(α j,β j,γ j))

)2
, s.t. A⪰ 0,

where N (αi,βi,γi) collects six neighboring samples of (αi,βi,γi)
(two in each axis of α, β, and γ), and vi j is defined as

exp(vi j×) = R(α j,β j,γ j)R(αi,βi,γi)
T .

With this setup, we compute the correction

v =−A†b, (15)

and augment Rinit with exp(v×)R(αi,βi,γi).

7.3. Rotation Refinement

Starting from each Ri ∈ Rin, the final stage of our approach per-
forms local optimization to solve Eq. (1). In this local phase, we
alternate between fixing wil to optimize e(R) and updating wil from
the current optimal solution R. When wil are fixed, we employ the
Gauss-Newton method with Levenberg–Marquardt iterative regular-
ization to minimize e(R). Denote Rc as the current rotation. Each
Gauss-Newton step optimizes v by substituting (10) into (1)

min
v

nr

∑
i=1

lmax

∑
l=1

∥(I + vxAx
l + vyAy

l + vzAz
l ) f P,i

l (Rc)− f Q,i
l ∥2 +µ∥v∥2

(16)
where µ is the Levenberg–Marquardt regularization coefficient. The
optimal v to (16) is given by

v⋆ =
( nr

∑
i=1

lmax

∑
l=1

Jc
l,i

T Jc
l,i +µI3

)−1 ni

∑
i=1

lmax

∑
l=1

Jc
l,i

T ( f Q,i
l − f P,i

l (Rc)
)

(17)

submitted to Eurographics Symposium on Geometry Processing (2025)



8 of 21 FP2-1005 / Spherical Harmonics Rotation Optimization

Chair Table Plane Bag Cap Earph. Guitar Knife Lamp Laptop Motor. Mug Pistol Rocket Skateb. Car Mean Timing
MICCAI05 6.40 16.6 16.4 10.5 24.5 9.49 8.43 19.2 24.2 7.55 4.83 8.99 6.33 18.3 8.63 4.12 12.15 0.67

TIP13 6.82 15.9 17.1 9.72 23.6 9.69 8.72 19.3 24.1 7.58 4.93 8.91 6.25 18.4 8.43 3.92 12.08 0.83
PAMI07 7.06 16.3 16.8 10.9 23.8 9.59 8.83 19.6 24.4 7.75 4.93 9.03 6.47 18.5 8.79 4.21 12.31 0.46
JVCIR16 6.73 19.6 11.49 11.03 18.1 9.89 7.73 21.6 26.7 10.8 6.68 6.93 8.16 23.6 10.5 7.36 12.93 0.81
IROS18 24.3 24.5 25.3 25.8 47.2 14.9 15.3 31.4 42.1 15.4 14.6 31.2 14.1 29.9 28.2 19.5 25.23 0.11

4PCS+ICP 14.3 43.5 22.3 27.8 53.2 12.9 13.6 33.2 46.3 14.1 12.4 29.2 11.1 33.9 29.2 17.5 25.91 2.12
Ours 5.75 11.4 5.07 7.45 14.0 5.00 3.73 15.0 18.7 7.45 4.90 4.30 6.13 13.2 4.97 1.93 8.06 0.81

No-Weighting 6.50 16.4 16.8 10.9 24.2 9.59 8.12 21.2 23.2 7.83 4.98 8.91 6.16 18.6 8.59 3.97 12.25 0.80
No-LocalOpt 15.5 15.2 13.5 11.9 18.2 12.1 7.99 17.2 26.7 10.5 8.54 17.5 9.92 17.2 8.57 7.54 13.63 0.35

nβ = 6 6.65 11.7 5.74 7.97 15.3 6.12 4.27 16.1 19.3 7.88 5.11 6.72 6.52 13.6 5.23 2.15 8.77 0.76
nβ = 24 5.93 11.4 5.24 7.46 14.2 5.87 3.82 15.1 18.9 7.45 4.94 4.41 6.16 13.3 5.04 2.02 8.20 1.16

No-Refine 6.23 12.4 5.91 8.13 14.7 6.12 3.94 16.7 20.1 7.93 4.98 4.87 6.65 13.7 5.25 2.32 8.74 0.96
Top-1 12.3 41.2 20.8 25.8 46.2 6.86 6.46 35.2 40.3 8.01 5.41 20.2 7.12 36.9 26.2 13.5 22.03 0.48
Top-2 6.23 14.6 6.62 7.93 16.3 5.49 4.07 16.5 22.5 7.54 4.99 5.23 6.20 19.2 8.65 4.01 9.35 0.66
DGrid 5.41 16.2 13.9 12.9 20.4 9.72 10.1 16.2 21.3 7.45 4.23 9.21 7.49 15.1 8.57 4.36 11.4 4.07

Table 1: This table presents quantitative results on ShapeNetPart, including rotation error for each category and the average running time
for each shape pair. The top block shows results of five baselines. These include [HSZ∗05] and [AMV13] that align the original spherical
harmonics, and [Kaz07], [BHACB16], and [HTB18] that perform various approximations. The second block shows the result of our method.
The third block shows an ablation study. (No-Weighting): Dropping the weights wil in each term in Eq. (1). (No-Refine): Merely using the
discrete local minima from the rotation samples. (nβ = 6): Using a coarse grid for rotation samples. (nβ = 24): Using a fine grid for rotation
samples. (No-LocalOpt): Without local refinement. (Top-1): Using the best discrete local minimum for local refinement. (Top-2): Using the top
two discrete local minima for local refinement. (DGrid): Using a dense grid to search the best rotation with weights in Eq. (13).

where

Jc
l,i = (Ax

l f P,i
l (Rc),Ay

l f P,i
l (Rc),Az

l f P,i
l (Rc)).

We then update Rc as exp(v⋆)Rc. We dynamically adjust the value
of µ to ensure that the objective function in Eq. (1) decreases during
the optimization procedure. In our experiments, we find that in most
cases µ = 0 is sufficient. We only have a positive µ in cases where
there are large shape variations between P and Q.

Given the current Rc, we compute

sc
il =

∥ f P,i
l (Rc)− f Q,i

l ∥
∥ f P,i

l (I3)∥+∥ f Q,i
l ∥

,

and set wil = exp
(
− sc

il
2

2σ2

)
. In Section F, we present a local conver-

gence analysis of the proposed alternating scheme.

8. Experimental Results

This section presents experimental evaluations of our approach. We
begin with the experimental setup in Section 8.1. We then present
an analysis of the experimental results in Section 8.2. Section 8.3
describes an ablation study.

8.1. Experimental Setup

We tested our algorithm in 16 popular categories of ShapeNet-
Part [YKC∗16]. For each category, we randomly sample 20 shapes
and evaluate the mean rotation error of each approach among all
pairs of shapes. Most of these categories have global rotation symme-
tries. When evaluating rotation errors on them, we manually annotate
the underlying symmetries and factor out them before calculating the
rotation error. Let Rsym collect the rotations in a symmetry group,

i.e., |Rsym|> 1 iff there is a global rotation symmetry. Denote RPQ

and Rgt
PQ as the predicted and ground-truth relative rotation from a

shape P to a shape Q, respectively. We compute the rotation error
θPQ between them as

θPQ = min
R∈Rsym

acos

 tr
(

RT
PQRRgt

PQ

)
−1

2

 ,

which is the minimal rotation angle between the predicted relative
rotation and the ground-truth relative rotations defined by the sym-
metry group. We report the mean of θPQ between all pairs of shapes
in each category.

Baseline comparisons employ five non-learning based ap-
proaches introduced in the literature, i.e., MICCAI05 [HSZ∗05],
TIP13 [AMV13], PAMI07 [Kaz07], JVCIR16 [BHACB16], and
IROS18 [HTB18]. In particular, MICCAI05 and TIP13 seek to
solve the global optimization problem Eq. (1) with uniform weights
wil . PAMI07, JVCIR, and IROS18 involve various approximations
of Eq. (1). For fair comparisons, our approach and all baseline
approaches share the same spherical harmonics encodings. In ad-
dition, we also include a registration-based baseline, which com-
bines Super4PCS [MAM14] to predict global rotation, followed by
ICP [BM92, SK21] for local refinement.

All experiments were conducted on a Desktop with 20-Core
2.4HZ GPU and 128G main memory. All implementations used
Matlab 2024B. No GPUs were used. For all of our experiments, we
used lmax = 20 for all approaches except IROS18, which uses the
leading SH coefficients.
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(a) Input (b) Target (c) MICCAI05 (d) TIP13 (e) PAMI07 (f) JVRIR16 (g) IROS18 (h) 4PCS+ICP (i) Ours (j) Source GT
Figure 5: This figure shows qualitative results of baseline approaches and our approach. We show two challenging shape pairs. (a) Input
source shape. (b) Target shape. (c) MICCAI05. (d) TIP13. (e) PAMI07. (f) JVRIR16. (g) IROS18. (h) 4PCS+ICP. (i) Ours. (j) Source shape
with GT alignment

8.2. Analysis of Results

Table 1 and Figure 5 show quantitative and qualitative results, respec-
tively. In general, our approach outperforms all existing approaches
in accuracy. The computational cost is on-par with efficient algo-
rithms that use solve approximations of Eq. (1).

Compared to MICCAI05 and TIP13 that align SH coefficients
directly, our approach improves from the best of them by 33.28%
in mean rotation error. The main improvements come from the
reweighting scheme that discards frequencies that contain a lot of
noise due to rotation symmetries. We can see this effects on Ta-
ble, Plane, Guitar, Knife, Motocycle, Rocket, Skateboard, and Car,
which possess an approximate D2h point group symmetry group.
The improvements in those are larger than those in other categories.
Moreover, in the more challenging categories, such as Lamp and
Pistol, the relative improvements are also salient. This shows the
importance of aligning specific SH frequencies rather than all fre-
quencies. Computationally, our approach has a running time similar
to that of MICCAI05 and TIP13. The major improvements come
from the efficient local refinement step, although we perform local
optimization from multiple initial rotations. Figure 5 shows that our
approach is more accurate than MICCAI05 and TIP13 both glob-
ally and locally, in which the reweighted objective function offers
improved globally and locally minima.

Compared to PAMI07, JVCIR16, and IROS18 that align SH
coefficients approximately, our approach shows significant improve-
ments in rotation errors. Our approach is eight times slower than
IROS18, which uses only the first three frequencies of the spherical
harmonics. However, in terms of rotation errors, our approach is
three times smaller, showing a significant improvement in accu-
racy. Our approach is about 80% times slower than PAMI07, yet
we improve from PAMI07 by 34.52% in terms of rotation errors.
These results show that it is important to utilize all SH coefficients
for rotation estimation and doing so directly, e.g., unlike the se-
quential approach of estimating rotation axis and rotation angle in

order. Such improvements can be seen visually in Figure 5, in which
PAMI07, JVCR16, and IROS18 exhibit various global errors.

The approach of matching feature points and then applying ICP
refinement does not perform well. This approach is most suited
for shapes that are very similar to each other and does not offer
accurate results when the input shapes are very different from each
other. Quantitatively, the accuracy is similar to the weakest baseline
that aligns SH coefficients for relative rotation estimation. In terms
of computational cost, feature matching is also more costly. On
the other hand, feature matching is applicable for partial shape
matching.

8.3. Ablation Study

This section presents an ablation study of our approach.

No-Weighting. In this setting, we eliminate weighting schemes in
both the global optimization phase and the local refinement phase,
i.e., wil = 1 in Eq. (1). As shown in Table 1, the mean rotation
error increases by 51.99% when using identical weights wil = 1.
The performance is still slightly better than that of MICCAI05 and
TIP13 because we perform local refinement from multiple initial
rotations. These results show that applying suitable weights to dif-
ferent frequencies is critical to improving the accuracy of rotation
estimation.

No-LocalOpt. In this setting, we drop the local refinement step.
This means that the final result is given solely by the rectification
described in Eq. (15). Without local refinement, the mean ration error
increases by 69.35%. In addition to the fact that local refinement
improves the local accuracy, we also find that it also affects the final
output. This is because the scores of the optimized rotations may be
different from the initial rotations. An example of this is shown in
the second column of Figure 5.

Grid resolution for initial rotation estimation. The default grid
resolution is nβ = 12 for a grid of 24×12×24 on which we compute
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(a) Input (b) Target (c) NoWeig. (d) NoLocal. (e) nβ = 6 (f) nβ = 24 (g) NoRefine (h) Top-1 (i) Top-2 (j) Ours (k) Source GT
Figure 6: This figure shows qualitative results of the ablation study. We show two representative shape pairs. (a) Input Source shape. (b)
Target shape. (c) Without the reweighing scheme. (d) No local optimization. (e) nβ = 6 in the global rotation initialization phase. (f) nβ = 24 in
the global rotation initialization phase. (g) No rectification when doing the initialization. (h) Using the top local minimum. (i) Using the top
two local minima. (j) Our approach with default hyper-parameters. (k) Source shape with GT alignment. Source shapes with GT alignment is
colored in red and overlay to other results for better comparison.

the alignment scores. We have tested when setting nβ = 6 and nβ =
24. As shown in Table 1 and Figure 5, the mean rotation error
increases by 8.81% when using nβ = 6. This can be understood
as the fact that discrete local minima from a very coarse grid can
be inaccurate, and this cannot be recovered from the rectification
step in Eq. (15). Visually, using a coarse grid can lead to both local
and global errors due to competing local minima. In contrast, using
nβ = 24 leads to 67% increase in running time. In terms of precision,
the mean rotation error increases by 1.74%. One explanation is that
there are many local minima when nβ = 24, and we may miss
important ones by choosing the top-3 local minima.

No-Refinement. In this setting, we drop the local rectification step
in Eq. (15) and start the local optimization from the discrete local
minima directly. In this case, the running time increases by 20.5%
as the local optimization step needs more iterations to converge. On
the other hand, we also see that the mean rotation error increases
slightly by 8.44%. This is caused by the fact that for challenging
shape pairs, there are a lot of weak local minima near the global
optimal. The rectification step can avoid such weak local minima
using values of the objective function at neighboring samples. With-
out the rectification step, local optimization can get stuck in a weak
local minimum near a discrete local minimum.

Varying the number of discrete local minima. Another hyper-
parameter is how many discrete local minima (sorted in the increas-
ing order of their objective values) to test for local optimization.
When nβ = 12, the default value is 3. We tested using the top-1 and
top-2 discrete local minima for local optimization. As shown in Ta-
ble 1, only using the best discrete local minimum increases the mean
rotation error by 273.3%. Using top-2 discrete local minima only
increases the mean rotation error by 15.71%, a significant improve-
ment over using the best. Visually, using few local minima can miss
the underlying global local minimum, which cannot be recovered
from local optimization. We also tested using top-4 discrete local
minima, and the difference in mean ration error is about 0.3%, while
the running time increases by 15%. This means that using top-3
discrete local minima maintains a good balance between accuracy
and efficiency.

Dense grid search. Another strategy is to calculate the matching
score on a dense grid. In this test, we set nβ = 96. Table 1 shows that
the computational cost increases by 400%. In addition, the accuracy
also drops by noticeable margins. The reason is that the global phase

does not have access to a better prediction of the term weights as
we do not know the underlying relative pose.

9. Conclusions, Discussions, and Future Work

In this paper, we have introduced an approach to compute the rela-
tive rotation between two normalized shapes by converting them into
spherical functions and solving an optimization problem that mini-
mizes the differences between their rotated coefficients of spherical
harmonics. The objective function is based on a stability analysis
showing that, due to symmetries, coefficients of some frequencies
are more useful than others. This leads to a robust objective function
whose global minimums are more meaningful than the widely used
squared sum of L2 distances between coefficients of all frequen-
cies. We introduce a numerical optimization scheme to solve the
induced optimization problem. Experimental results show that our
approach outperforms baseline approaches both qualitatively and
quantitatively.

From an optimization perspective, the search space is only three-
dimensional. Even with such a low-dimensional optimization prob-
lem, our experiments show that the loss surface can be very com-
plicated. The problems are two-fold. The first is the there are many
local minimums. The second issue is that the local minimums are
not accurate. What we find in our experiments is that these two
issues are competing, meaning a smooth loss surface tends to have
fewer local minimums while the global minimum of a sharp loss
surface (e.g., when using a robust norm) is more accurate, but it may
have many local minimums. The way we address this issue is to use
discrete local minimums at a coarse resolution and a rectification
step that does implicit smoothing.

Besides serving as a relation rotation estimation approach, the
research results in this paper opens the door to develop a 3D neural
representation using spherical harmonics. In particular, we can use
the pose estimation approach in this paper to learn a spherical har-
monic neural representation in a canonical coordinate system, e.g.,
a generative model that maps latent codes to spherical harmonic
coefficients. During training/testing, we can optimize the rotation
of each instance together with this generative model, in which the
local optimization step plays a very important role. The advantage
of aligning spherical harmonics in a canonical coordinate system
is to avoid constructing an equivariant/invariant network using the
expensive Wigner-D representation. Intuitively, this avoid applying
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the Wigner-D representation repeatedly just to factor out the same
rotation that is shared by all the layers.

Another future direction is to fully characterize the distribution
of spherical harmonic coefficients with respect to the distributions
of 3D shapes. In this paper, we have studied that for certain point
groups, the L2 norms of the spherical harmonic coefficients at cer-
tain frequencies are zero. In the future, we would like to fully charac-
terize relevant properties for all point groups and specific elements of
the spherical harmonics coefficients.
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Appendix A: Proof of Prop. 1

Proof First,

−dθsin(θ) = cos(θ+dθ)− cos(θ) = cxy− cyx = cx sin(θ)sin(φ)− cy sin(θ)cos(φ).

This means

dθ = cy cos(φ)− cx sin(φ).

Moreover,

cos(φ)dφ =sin(φ+dφ)− sin(φ) =
czx− cxz√

1− z2
+

yz(cxy− cyx)√
(1− z2)3

=
cz sin(θ)cos(φ)− cx cos(θ)

sin(θ)
+

sin(θ)sin(φ)cos(θ)(cx sin(θ)sin(φ)− cy sin(θ)cos(φ)
sin3(θ)

=cz cos(φ)− cx
cos(θ)(1− sin2(φ))

sin(θ)
− cy

cos(θ)sin(φ)cos(φ)
sin(θ)

=cos(φ)
(
cz −

cos(θ)
sin(θ)

(cx cos(φ)+ cy sin(φ))
)
.

This means dφ = cz − cos(θ)
sin(θ) (cx cos(φ)+ cy sin(φ)), which ends the proof.

Appendix B: Proof of Theorem 1

Applying Prop. 1, we have

Y 0
l (θ+dθ,φ+dφ)−Y 0

l (θ,φ) =−K0
l

∂P0
l (cos(θ))

∂z
sin(θ)dθ

=−K0
l
(
cy cos(φ)

∂P0
l (cos(θ))

∂z
sin(θ)− cx sin(φ)

∂P0
l (cos(θ))

∂z
sin(θ)

)
.

Note that

∂P0
l (z)
∂z

=
(−1)l

2l l!
∂

l+1(z2 −1)l

∂l+1z
.

More over

P1
l (z) =

(−1)l

2l l!
(1− z2)

1
2

∂
l+1(z2 −1)l

∂l+1z
.

This means

P1
l (cos(θ)) = sin(θ)

∂P0
l (cos(θ))

∂z
.

It follows that

Y 0
l (θ+dθ,φ+dφ) = Y 0

l (θ,φ)+
K0

l√
2K1

l

(cxY−1
l (θ,φ)− cyY 1

l (θ,φ)) = Y 0
l (θ,φ)+

√
l(l +1)

2
(cxK−1

l (θ,φ)− cyK1
l (θ,φ)).

Define for m > 1,

Qm
l (z) =

1
2
( mz√

1− z2
Pm

l (z)+
√

1− z2 ∂Pm
l (z)
∂z

)
, (18)

Rm
l (z) =

1
2
( mz√

1− z2
Pm

l (z)−
√

1− z2 ∂Pm
l (z)
∂z

)
. (19)

The first lemma expresses Y m
l (θ+dθ,φ+dφ) using Y m

l (θ,φ), Pm
l (cos(θ)), and Qm

l (cos(θ)).

Lemma 1 For m > 0, we have

Y m
l (θ+dθ,φ+dφ)−Y m

l (θ,φ) =cz(−mY−m
l (θ,φ))+ cx

√
2Km

l (sin((m+1)φ)Qm
l (cos(θ))+ sin((m−1)φ)Rm

l (cos(θ)))

+ cy
√

2Km
l (−cos((m+1)φ)Qm

l (cos(θ))+ cos((m−1)φ)Rm
l (cos(θ))) (20)
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and

Y−m
l (θ+dθ,φ+dφ)−Y−m

l (θ,φ) =cz(mY m
l (θ,φ))+ cx

√
2Km

l (−cos((m+1)φ)Qm
l (cos(θ))− cos((m−1)φ)Rm

l (cos(θ)))

+ cy
√

2Km
l (−sin((m+1)φ)Qm

l (cos(θ))+ sin((m−1)φ)Rm
l (cos(θ))). (21)

Proof See Section B.

The following lemma characterizes Qm
l (z).

Lemma 2 We have

Qm
l (z) =

1
2

Pm+1
l (z). (22)

Proof See Section B.

The following lemma characterizes Rm
l (z).

Lemma 3 We have

Rm
l (z) = (l −m+1)(l +m)Pm−1

l (z). (23)

Proof See Section B.

Substituting Eq. (22) and Eq. (23) into Eq. (20, we have that when m > 1

Y m
l (θ+dθ,φ+dφ)−Y m

l (θ,φ) =cz(−mY−m
l (θ,φ))+ cx

( Km
l

2Km+1
l

Y−(m+1)
l (θ,φ)+

Km
l (l −m+1)(l +m)

Km−1
l

Y−(m−1)
l (θ,φ)

)
+ cy

(
− Km

l

2Km+1
l

Y m+1
l (θ,φ)+

Km
l (l −m+1)(l +m)

Km−1
l

Y m−1
l (θ,φ)

)
When m = 1,

Y 1
l (θ+dθ,φ+dφ)−Y 1

l (θ,φ) =cz(−Y−1
l (θ,φ))+ cx

( K1
l

2K2
l

Y−2
l (θ,φ)+

K1
l l(l +1)√

2K0
l

Y 0
l (θ,φ)

)
+ cy

(
− K1

l
2K2

l
Y 2

l (θ,φ)+
K1

l l(l +1)√
2K0

l

Y 0
l (θ,φ)

)

Proofs of Key Lemmas

Proof of Lemma 1

We first consider Y m
l (θ+dθ,φ+dφ) for m > 0. Applying Prop. 1, we have

Y m
l (θ+dθ,φ+dφ)−Y m

l (θ,φ) =−
√

2Km
l

(
sin(mφ)Pm

l (cos(θ))mdφ+ cos(mφ)
∂Pm

l (cos(θ))
∂z

sin(θ)dθ

)
=−

√
2Km

l

(
mcz sin(mφ)Pm

l (cos(θ))−m(cx cos(φ)+ cy sin(φ))sin(mφ)
cos(θ)
sin(θ)

Pm
l (cos(θ))

+(cy cos(φ)− cx sin(φ))cos(mφ)sin(θ)
∂Pm

l (cos(θ))
∂z

)
. (24)

Note that

cos(φ)sin(mφ) =
sin((m+1)φ))+ sin((m−1)φ)

2
, (25)

sin(φ)sin(mφ) =
cos((m−1)φ)− cos((m+1)φ)

2
, (26)

sin(φ)cos(mφ) =
sin((m+1)φ)− sin((m−1)φ)

2
, (27)

cos(φ)cos(mφ) =
cos((m−1)φ)+ cos((m+1)φ)

2
. (28)
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Substituting Eq. (25)-(28) into Eq. (24), we have

Y m
l (θ+dθ,φ+dφ)−Y m

l (θ,φ)+mczY−m
l (θ,φ) =

√
2Km

l
2

(
cy cos((m+1)φ)

(
−m

cos(θ)
sin(θ)

Pm
l (cos(θ))− sin(θ)

∂Pm
l (cos(θ))

∂z
)

+ cy cos((m−1)φ))
(
m

cos(θ)
sin(θ)

Pm
l (cos(θ))− sin(θ)

∂Pm
l (cos(θ))

∂z
)

+ cx sin((m+1)φ)
(
m

cos(θ)
sin(θ)

Pm
l (cos(θ))+ sin(θ)

∂Pm
l (cos(θ))

∂z
)

+ cx sin((m−1)φ)
(
m

cos(θ)
sin(θ)

Pm
l (cos(θ))− sin(θ)

∂Pm
l (cos(θ))

∂z
))

Note that

cos(θ)
sin(θ)

Pm
l (cos(θ)) =

z√
1− z2

Pm
l (z)|z=cos(θ), sin(θ)

∂Pm
l (cos(θ)

∂z
=
√

1− z2 ∂Pm
l (z)
∂z

|z=cos(θ).

We have

Y m
l (θ+dθ,φ+dφ)−Y m

l (θ,φ)+mczY−m
l (θ,φ)

=

√
2Km

l
2

(
− cy cos((m+1)φ)Qm

l (cos(θ))+ cy cos((m−1)φ)Rm
l (cos(θ))+ cx sin((m+1)φ)Qm

l (cos(θ))

+ cx sin((m−1)φ)Rm
l (cos(θ))

)
.

We then consider Y−m
l (θ+dθ,φ+dφ) for m > 0. Applying Prop. 1, we have

Y−m
l (θ+dθ,φ+dφ)−Y−m

l (θ,φ) =
√

2Km
l

(
cos(mφ)Pm

l (cos(θ))mdφ− sin(mφ)
∂Pm

l (cos(θ))
∂z

sin(θ)dθ

)
=
√

2Km
l

(
mcz cos(mφ)Pm

l (cos(θ))−m(cx cos(φ)+ cy sin(φ))cos(mφ)
cos(θ)
sin(θ)

Pm
l (cos(θ))

− (cy cos(φ)− cx sin(φ))sin(mφ)sin(θ)
∂Pm

l (cos(θ))
∂z

)
. (29)

Substituting Eq. (25)-(28) into Eq. (29), we have

Y−m
l (θ+dθ,φ+dφ)−Y−m

l (θ,φ)−mczY m
l (θ,φ) =

√
2Km

l
2

(
cx cos((m+1)φ)

(
−m

cos(θ)
sin(θ)

Pm
l (cos(θ))− sin(θ)

∂Pm
l (cos(θ))

∂z
)

+ cx cos((m−1)φ))
(
−m

cos(θ)
sin(θ)

Pm
l (cos(θ))+ sin(θ)

∂Pm
l (cos(θ))

∂z
)

+ cy sin((m+1)φ)
(
−m

cos(θ)
sin(θ)

Pm
l (cos(θ)− sin(θ)

∂Pm
l (cos(θ))

∂z
)

+ cy sin((m−1)φ)
(
m

cos(θ)
sin(θ)

Pm
l (cos(θ))− sin(θ)

∂Pm
l (cos(θ))

∂z
))

=
√

2Km
l cx
(
− cos((m+1)φ)Qm

l (cos(θ))− cos((m−1)φ)Rm
l (cos(θ))

)
+
√

2Km
l cy
(
− sin((m+1)φ)Qm

l (cos(θ))+ sin((m−1)φ)Rm
l (cos(θ))

)
,

Proof of Lemma 2

Proof First, we have

mz√
1− z2

Pm
l =

(−1)l

2l l!
mz(1− z2)

m−1
2

∂
l+m(z2 −1)l

∂l+mz
. (30)

Moreover, √
1− z2 ∂Pm

l (z)
∂z

=
√

1− z2 (−1)l

2l l!
∂

∂z

(
(1− z2)

m
2

∂
l+m(z2 −1)l

∂l+mz

)
=− (−1)l

2l l!
mz(1− z2)

m−1
2 (1− z2)

m−1
2

∂
l+m(z2 −1)l

∂l+mz
+

(−1)l

2l l!
(1− z2)

m+1
2

∂
l+m+1(z2 −1)l

∂l+m+1z
. (31)
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Combing Eq. (30) and Eq. (31), we have

Qm
l (z) =

1
2
(−1)l

2l l!
(1− z2)

m+1
2

∂
l+m+1(z2 −1)l

∂l+m+1z
=

1
2

Pm+1
l (z).

Proof of Lemma 3

Again combing Eq. (30) and Eq. (31), we have

Rm
l (z) =

1
2
(−1)l

2l l!
(1− z2)

m−1
2

(
2mz

∂
l+m(z2 −1)l

∂l+mz
+(z2 −1)

∂
l+m+1(z2 −1)l

∂l+m+1z

)
(32)

As (z2 −1)l =
l
∑

k=0

(−1)k l!
k!(l−k)! z2l−2k, it follows that

∂
l+m(z2 −1)l

∂l+mz
=

⌊ l−m
2 ⌋

∑
k=0

(−1)k l!(2l −2k)!
k!(l − k)!(l −2k−m)!

zl−2k−m, (33)

∂
l+m+1(z2 −1)l

∂l+m+1z
=

⌊ l−m
2 ⌋

∑
k=0

(−1)k l!(2l −2k)!
k!(l − k)!(l −2k−m−1)!

zl−2k−m−1. (34)

Substituting (33) and (34) into (32), we have

Rm
l (z) =

1
2
(−1)l

2l l!
(1− z2)

m−1
2

⌊ l−m
2 ⌋

∑
k=0

(−1)kzl−2k−m+1 l!(2l −2k)!
k!(l − k)!(l −2k−m)!

(
l −2k+m

+
2k(2l −2k+1)
(l −2k−m+1)

)
(35)

Moreover,

Pm−1
l (z) =

(−1)l

l!2l (1− z2)
m−1

2

⌊ l−m+1
2 ⌋

∑
k=0

(−1)kl!
k!(l − k)!

(2l −2k)!
(l −2k−m+1)!

Note that

(l −2k−m+1)(l −2k+m)+2k(2l −2k+1)

=(l −m+1)(l +m)+4k2 −4k2 −2k(2l −1)+2k(2l −1) = (l −m+1)(l +m).

This means Rm
l (z) = (l −m+1)(l +m)Pm−1

l (z). which ends the proof.

Appendix C: Proof of Propositions in Section ??

Proof of Prop 2

Suppose f (θ+ 2iπ
k ) = f (θ), ∀θ ∈ [0, 2π

k ). We have

c f
2i−1 =

∫ 2π

0
f (θ)sin(iθ)dθ

=
k−1

∑
j=0

∫ 2π

k

0
f (θ)sin(iθ+

2i jπ
k

)dθ

=
∫ 2π

0
f (θ)

(1
k

k−1

∑
j=0

sin(
iθ+2i jπ

k
)
)

dθ

=
∫ 2π

0
f (θ)

(
sin(

iθ
k
)ai jk + cos(

iθ
k
)bi jk

)
dθ

where

ai jk =
1
k

k−1

∑
j=0

cos(
2i jπ

k
), bi jk =

1
k

k−1

∑
j=0

sin(
2i jπ

k
).
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Note that

ai jk sin(
iπ
k
) =

1
k

k−1

∑
j=0

cos(
2i jπ

k
)sin(

iπ
k
)

=
1
2k

k−1

∑
j=0

(
sin(

(2 j+1)iπ
k

)− sin(
(2 j−1)iπ

k
)
)

=
1
2k

(
sin(

(2k−1)iπ
k

)− sin(
−iπ

k
)
)
= 0.

When mod(i,k) ̸= 0, sin( iπ
k ) ̸= 0. This means ai jk = 0. If mod(i,k) = 0, then ai jk = 1. Through similar calculations, when mod(i,k) ̸= 0,

bi jk = 0. If mod(i,k) = 0, then bi jk = 0.

Appendix D: Patterns of l: Zero Spherical Harmonic Coefficients

Let G be a finite subgroup of SO(3). A spherical harmonic Y m
l is invariant under G if ∀g ∈ G, Y m

l (g ·x) = Y m
l (x). This means that Y m

l lies in
the trivial representation of G within the degree-l representation. Consider the invariant projection operator for group G

PG f (x) = 1
|G| ∑

g∈G
f (g ·x) (36)

which projects any function f onto the subspace of functions invariant under G. Let Vl = Span{Y m
l : −l ⩽ m ⩽ l} be the (2l +1)-dimensional

irreducible representation of SO(3). The invariant projection operator of G at degree l is

PG|Vl
=

1
|G| ∑

g∈G
Dl(g) (37)

where Dl(g) is the Wigner-D matrix. If rank(PG|Vl
)> 0, then there is at least one linear combination of Y m

l that is invariant under all g ∈ G.
Otherwise, all spherical harmonic coefficients at degree l must be zero and thus fl = 0.

An easy way to compute the rank is by taking the matrix trace, or in other words, computing the character function of the representations.
This also gives the multiplicity mG

l of the trivial representation in Vl

mG
l =

1
|G| ∑

g∈G
χl(g), (38)

where |G| is the order of the group, χl is the character function of the degree-l representation of SO(3). For any 3D rotation g ∈ SO(3), the
character χl(g) only depends on its rotation angle θ,

χl(g) =
sin((2l +1)θ/2)

sin(θ/2)
. (39)

The character functions are constant on each conjugation class, and 3D rotations with the same angle are from the same conjugation class.
Therefore, we can also calculate the trivial-representation multiplicity in Vl with

mG
l =

1
|G| ∑k

nk χl(θk), (40)

where nk is the number of elements in the k-th conjugation class and θk is the corresponding rotation angle.

Cyclic group Cn The rotations in the cyclic group Cn are of angles θk = 2πk/n, k = 0, · · · ,n−1. The trivial-representation multiplicity is

mCn
l =

1
n

n−1

∑
k=0

χl

(
2πk

n

)
=

1
n

n−1

∑
k=0

l

∑
m=−l

e−im 2πk
n =

1
n

l

∑
m=−l

n−1

∑
k=0

e−im 2πk
n . (41)

Observe that

n−1

∑
k=0

e−im 2πk
n =

{
n if m ≡ 0 mod n
0 otherwise

. (42)

Thus, mCn
l = #{m ∈ [−l, l] : m ≡ 0 mod n}= ⌊2l/n⌋+1. There is no l that makes mCn

l vanish.
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Dihedral group Dn The Dihedral group Dn contains all rotations in the cyclic group Cn, plus n reflections through the axes perpendicular to
the main one. The trivial-representation multiplicity is

mDn
l =

1
2n

(
n−1

∑
k=0

χl

(
2πk

n

)
+

n−1

∑
k=0

χl(π)

)
=

1
2

(⌊
2l
n

⌋
+1+(−1)l

)
. (43)

For any n > 2, odd l makes mDn
l = 0.

Tetrahedral group T The conjugation classes are

Rotation angle 0 2π/3 π

#Elements 1 8 3

The trivial-representation multiplicity is

mT
l =

1
12

(χl(0)+8χl(2π/3)+3χl(π)) =
1

12

(
(2l +1)+8

sin((2l +1)π/3)
sin(π/3)

+3(−1)l
)
, (44)

giving the non-zero coefficients fl = 0,3,4,6,7,9,10, · · · .

Octahedral group O The conjugation classes are

Rotation angle 0 π 2π/3 π/2
#Elements 1 6 8 9

The trivial-representation multiplicity is

mO
l =

1
24

(χl(0)+6χl(π)+8χl(2π/3)+9χl(π/2)), (45)

giving the non-zero coefficients fl = 0,4,6,8,9,10,12, · · · .

Icosahedral I The conjugation classes are

Rotation angle 0 2π/5 4π/5 2π/3 π

#Elements 1 15 15 20 24

The trivial-representation multiplicity is

mI
l =

1
60

(χl(0)+15χl(2π/5)+15χl(4π/5)+20χl(2π/3)+24χl(π)), (46)

giving the non-zero coefficients fl = 0,6,10,12,15,16,18,20, · · · .

Appendix E: Analysis of Weighted L2 Norm

We provide an argument on the importance of using non-uniform weights in the presence of vanishing SH coefficients. Although the objective
function employed in relative rotation estimation is non-linear, the local refinement operates in a local regime, in which we can approximate a
rotation using a linear map. In light of this view, we opt to study a simple linear least-square problem, whose behavior offers justification
of using non-uniform weights. Specifically, consider the fitting problem of optimizing x to minimize the following weighted minimization
problem:

min
x

w1(a1x−b1)
2 +w2(a2x−b2)

2. (47)

The first term corresponds to constraints provided by non-vanishing coefficients; a1 and b1 are independent and they satisfy

a1 ∼ U [ f − ϵ, f + ϵ], b1 ∼ U [ f c− ϵ, f c+ ϵ].

The second term corresponds the constraints provided by vanishing coefficients; a2 and b2 are independent and they satisfy

a2 ∼ U [−ϵ,ϵ], b2 ∼ U [−ϵ,ϵ].

It is clear that the optimal x in (47) is given by

x⋆ =
w1a1b1 +w2a2b2

w1a2
1 +w2a2

2
.
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The designed value of x⋆ is c. As x⋆ only depends on the ratio between w1 and w2, we fix w1 = 1 and define a function s(w2) as

s(w2) = Ea1,a2,b1,b2(x
⋆− c)2 (48)

= Ea1,a2,b1,b2

((a1b1 +w2a2b2

a2
1 +w2a2

2

)2 −2c
(a1b1 +w2a2b2

a2
1 +w2a2

2

)
+ c2

)
= Ea1,a2

(a2
1( f 2c2 + 2ϵ2

3 )+w2
2a2

2
2ϵ2

3(
a2

1 +w2a2
2
)2 −2c

a1 f c
a2

1 +w2a2
2
+ c2

)

= Ea1,a2

c2(a1(a1 − f )+w2a2
2
)2

+(a2
1 +w2

2a2
2)

2ϵ2

3(
a2

1 +w2a2
2
)2 . (49)

We show that when c ̸= 0

s(0)< s(1). (50)

In fact,

s(0) =
2ϵ2

3
Ea1

1
a2

1
+ c2Ea1

(a1 − f )2

a2
1

=
∞
∑
i=1

(2
3
+

2ic2

(2i+1)
) ϵ2i

f 2i .

Moreover,

s(1) = c2 +Ea1,a2

2ϵ2

3 −2c2a1 f

a2
1 +a2

2
+Ea1,a2

c2 f 2a2
1

(a2
1 +a2

2)
2 . (51)

Note that,

Ea1,a2

1
a2

1 +a2
2
=

∞
∑
i=0

Ea1 a−2−2i
1 (−1)iEa2 a2i

2

=
∞
∑
i=0

1
2i+1

Ea1 a−2−2i
1 (−1)iϵ2i

=
∞
∑
i=0

1
2ϵ(2i+1)2

(
( f − ϵ)−(2i+1)− ( f + ϵ)−(2i+1)

)
(−1)iϵ2i (52)

Moreover,

Ea1,a2

a1

a2
1 +a2

2
=

∞
∑
i=0

Ea1 a−1−2i
1 (−1)iEa2 a2i

2

=
∞
∑
i=0

1
2i+1

Ea1 a−1−2i
1 (−1)iϵ2i

=
1
f

∞
∑
i=

ϵ2i

f 2i +
∞
∑
i=1

1
2ϵ(2i+1)(2i)

(
( f − ϵ)−2i − ( f + ϵ)−2i

)
(−1)iϵ2i (53)

Furthermore,

Ea1,a2

a2
1

(a2
1 +a2

2)
2 =

∞
∑
i=0

Ea1 a−2−2i
1 (−1)i(2i+1)Ea2 a2i

2

=
∞
∑
i=0

Ea1 a−2−2i
1 (−1)iϵ2i

=
∞
∑
i=0

1
2ϵ(2i+1)

(
( f − ϵ)−(2i+1)− ( f + ϵ)−(2i+1)

)
(−1)iϵ2i (54)

Substituting Eqs. (52), (53), and (??) into (51), we have

s(1)≈ 2
3
+

4c2

3
ϵ2

f 2 .

This means s(0)< s(1) when c ̸= 0, which ends the analysis.
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Appendix F: Local Convergence Analysis

We provide a local convergence analysis of the optimization strategy in a more general setting. Suppose that we have n pairs of vectors f i(x)
and gi, where x is the optimization variable. As the norm of the spherical harmonics coefficient vector is fixed under rotation, we can model
the objective function as

f (x) =
N

∑
i=1

wi(x)∥ f i(x)−gi∥
2, wi(x) = exp

(
− ∥ f i(x)−gi∥

2

2σ2
i

)
. (55)

We study the convergence of our alternate minimization strategy in the vicinity of a local minimum x⋆. Introduce

H(x) =
n

∑
i=1

wi(x)
∂ f i
∂x

(x)
T

∂ f i
∂x

(x) (56)

F(x) =
n

∑
i=1

wi(x)
( ∂ f i(x

⋆)
∂x

T (
f i(x)−gi

)
σi

)( ∂ f i(x)
∂x

T (
f i(x)−gi

)
σi

)T
(57)

G(x) =
n

∑
i=1

wi(x)
∂

2 f i
∂2x

(x)
T

(gi − f i(x)) (58)

Theorem 3 If H(x⋆), F(x⋆), and G(x⋆) satisfy

∥H(x⋆)−1F(x⋆)∥+∥H(x⋆)−1G(x⋆)∥< 1, (59)

then there exists a radius δ, so that starting from x0 where ∥x0 − x⋆∥ ≤ δ, the alternating minimization procedure converges to x⋆ with a linear
convergence rate.

Proof Denote the value of x at the k-th iteration as xk+1. Then

xk+1 = argmin
x

n

∑
i=1

wi(xk)∥ f i(xk)+
∂ f i
∂x

(xk)(x− xk)−gi∥
2

= xk +H(xk)
−1g(xk) (60)

where

g(x) =
n

∑
i=1

wi(x)
∂ f i
∂x

(x)
T (

gi − f i(x)
)
.

Applying Taylor expansion, we have

wi(xk) = wi(x
⋆)
(

1−
( ∂ f i(x

⋆)
∂x

T (
f i(x

⋆)−gi
)

σ2
i

)T
(xk − x⋆)

)
+O(∥xk − x⋆∥2).

It follows that

g(xk) =−
n

∑
i=1

w⋆
i

( ∂ f i(x
⋆)

∂x

T (
f i(x

⋆)−gi
)

σi

)( ∂ f i(x
⋆)

∂x

T (
f i(x

⋆)−gi
)

σi

)T
(xk − x⋆)

+
n

∑
i=1

w⋆
i

∂
2 f i

∂2x
(xk)

T (
gi − f i(x

⋆)
)
(xk − x⋆)−H(x⋆)(xk − x⋆)+O(∥xk − x⋆∥2) (61)

=
(
−F(x⋆)+G(x⋆)−H(x⋆)

)
(xk − x⋆)+O(∥xk − x⋆∥2). (62)

Therefore,

xk+1 − x⋆ = H(x⋆)−1(−F(x⋆)+G(x⋆)
)
(xk − x⋆)+O(∥xk − x⋆∥2).

This means if Eq. (59) is satisfied, ∥xk+1 − x⋆∥ ≤ c∥xk − x⋆∥ for c < 1 and in a small neighborhood of x⋆. This ends the proof.
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